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ABSTRCT 
 

ASSESSING THE ROLE OF CHRONIC ARSENITE EXPOSURE IN DISRUPTING THE 
EGFR SIGNALING AXIS 

 
Christine Kim 

 
February 25, 2021 

 
Chronic arsenic exposure is a risk factor for the development of pulmonary 

diseases, including lung cancer, but the exact mechanism is not yet fully understood. 

Many previous studies have relied on acute arsenic exposure (i.e. 1-10 uM arsenic for 

24 hours) to study arsenic toxicological effects. However, acute exposure does not 

reflect the levels or duration of arsenic associated with environmental exposure, or 

drinking of contaminated well water. This dissertation differentiates the effects of acute 

versus chronic arsenic exposures on the EGFR signaling axis and suggests possible 

mechanisms for chronic arsenic-induced pulmonary diseases. The EGFR is a receptor 

tyrosine kinase localized on the cell surface. Overexpression of the EGFR has been 

used as biomarkers for many different types of cancers, including lung cancer. There is 

a strong association between arsenic and lung cancer development, although the clear 

mechanism is still elusive. I hypothesized that chronic exposure of an environmentally 

relevant level of arsenic disrupts the EGFR signaling axis. To test this, a non-malignant 

human bronchial epithelial cell line (BEAS-2B) was exposed to 100 nM arsenite for 24 

weeks. I first differentiated the impact of acute versus chronic arsenic exposure on the 

EGFR signaling axis. Both acute and chronic arsenic exposure increased EGFR protein 

expression level, but only chronic exposure increased EGFR activity, increased 

transcription and protein levels of TGFα. Next, I assessed the functional effects of  
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chronic arsenic exposure in BEAS-2B cells and measured EGFR dependency in chronic 

arsenic exposure-induced increased cell migratory ability, which may contribute to 

identifying a novel therapeutic target for arsenic-induced lung carcinogenesis. The 

dissertation proposes novel roles of acute and chronic arsenic on the EGFR signaling 

axis and potential mechanisms of chronic arsenic-induced lung diseases, such as lung 

cancer. It concludes that acute and chronic arsenic exposure impact the EGFR signaling 

axis in different mechanistic pathways, and chronic arsenic exposure increases cell 

migration in both EGFR-dependent and independent mechanisms. 
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CHAPTER 1 

INTRODUCTION 

Arsenic 

Arsenic is a powerful poison, owing to its lack of color, taste and odor [1]. It is 

ranked number one on the Agency for Toxic Substances and Disease Registry (ATSDR) 

Substance Priority List [1]. In 1973, arsenic was classified as group I “carcinogenic to 

humans” by the International Agency for Research on Cancer (IARC) based on 

epidemiological evidence in human and animal models [2-4]. Arsenic is ubiquitous in the 

environment, including air, soil, and water. Arsenic levels in the air and soil are difficult to 

measure and are not regulated by the U.S. Environmental Protection Agency (EPA) due 

to limited and/or transient human exposure. However, the EPA and the World Health 

Organization (WHO) have both set a maximum contaminant level of arsenic in drinking 

water to 10 ppb [5]. Despite this guideline, there are more than 200 million people 

around the world routinely exposed to levels of arsenic that exceed 10 ppb and are at 

risk of adverse health effects from arsenic exposure [6]. 

i. Arsenic Uses in Medical Applications

Arsenic is a double-edged sword, as it has been used for medical applications 

(Fig. 1). In the 18th century, Thomas Fowler, an English physician, produced Fowler’s 

Solution, a potassium bicarbonate-based arsenic solution, which was widely used to 

treat many conditions such as asthma, convulsions [7] and psoriasis [8]. Arsenic was 

also used to treat leukemia. With the Fowler’s Solution, the number of white blood cells 
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Figure 1. Arsenic is a double-edged sword.  
Arsenic is now a well-established carcinogen and is prominently associated with skin, 
lung, and bladder cancers.  Arsenic is also used in medical applications, especially as a 
treatment for leukemia. Despite its effectiveness, over time, carcinogenicity was 
observed in patients who had received arsenic treatment. Thus, its usage declined, but 
due to its potency in medical applications, it is under investigation for the treatment for 
other diseases.  

Arsenic: A Double-Edged Sword 
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declined dramatically in leukemia patients over 10-weeks treatment period [9]. 

Discontinuation of the therapy, however, led to clinical relapse within few weeks. 

Because of its anti-leukemic ability, arsenic was approved by the U.S. Food and Drug 

Administration (FDA) in 2001 for the treatment of acute promylelocytic leukemia (APL) 

[10], and is under investigation for the treatment of other cancer types [11-13].  

Arsenic hinders repair processes of UV-induced photoadducts [14-17], and its 

role in repressing DNA repair processes also contributes to chemotherapeutic effect. 

Wang et al. showed the combination treatment of arsenic with cisplatin is more effective 

in treating hepatocellular carcinoma than cisplatin treatment alone [18]. Another study 

showed that co-treatment of arsenic with cisplatin suppressed cisplatin-induced 

xeroderma pigmentosum group C (XPC) expression by sensitizing wild-type p53 cells, 

inhibiting the repair pathway [19], which enhanced the chemotherapeutic effect. Overall, 

such characteristics of arsenic support its role in chemotherapy and not only human 

toxicity. 

Health Consequences of Acute and Chronic Arsenic Exposure 

The deleterious effects of arsenic are highly dependent on its dose and duration 

of exposure as acute and chronic toxicities present differently. According to EPA 

Terminology Services (TS), acute exposure is defined as an exposure for 24 hours or 

less, and chronic exposure is defined as an exposure lasting 6 months to a lifetime [20]. 

There are also subacute and subchronic exposures. Subacute exposure is an exposure 

between 24 hours and 28 days, and subchronic exposure is a continuous exposure up to 

90 days [21].  

The acute and chronic arsenic toxicological effects on human health are 

summarized in Table 1. The sources of acute and chronic exposure vary, as do their 

biological effects on the body. Usually acute toxicity results from accidental ingestion of 
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high levels of arsenic, such as workers who ingest high levels of arsenic in their 

workplaces from dust and fumes. Ingestion of large amounts of arsenic requires 

treatment, such as administration of intravenous fluids, and chelation therapy to 

accelerate the excretion of arsenic. The symptoms include diarrhea, vomiting, 

dehydration, and hypotension (Table 1). In severe cases, the symptoms can lead to 

death, primarily due to dehydration and shock [22]. To determine the degree of acute 

exposure to arsenic, several tests can be performed, including blood and urine tests. 

The blood test, however, is useful only for 2-4 hours after initial exposure due to rapid 

clearance from the blood [1]. At later times, a more accurate measurement could be 

determined by performing a urine test. A study of individuals who ingested arsenite (a 

trivalent form of arsenic) containing drinking water revealed that 33% of arsenic was 

excreted in the urine within 48 hours, and 45% within 4 days [23].  

Chronic toxicity refers to people who are exposed to low levels of arsenic over a 

long period of time, such as workers in construction, ore smelting, or the semiconductor 

industry or those that consume tainted drinking water. The skin, lungs, and liver are the 

main target sites, as arsenite, especially, readily interacts with thiol or sulfhydryl groups 

in tissue proteins of the organs [24]. The reaction between arsenic and thiol groups can 

alter protein conformation and function [25]. Symptoms include skin lesions, pulmonary 

disease, cardiovascular disease, diabetes, neurological disorders, cancer, and death 

(Table 1) [24, 26, 27]. Typically, epithelial cells have a high content of cysteine residues 

to help target proteins at the cell surface [28, 29]. Arsenic accumulates at those locations 

due to its reactivity with thiol groups of cysteine residues [30, 31]. Thus, for chronic 

arsenic exposure, usually hair and nail analyses are reliable sources to measure the 

time of exposure. Further, the high thiol content of hair and nails causes the 

accumulation of arsenite in those tissues and makes them a reliable source for 

measuring cumulative arsenic levels. In individuals who have no known exposure,  
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Table 1. Toxicological effects of acute versus chronic arsenic exposure. 

Acute Exposure (<24 hours) Chronic Exposure (>6 months) 
• Vomiting
• Diarrhea
• Dehydration
• Hypotension
• Abdominal Pain
• Renal Failure

• Cancer in many organs
• Cardiovascular disease
• Respiratory disease
• Diabetes
• Hypertension
• Skin lesions and pigment changes
• Neurological disorders
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arsenic concentrations in hair ranges from 0.02 to 0.2 mg/kg [32-38]. In areas with high 

concentrations of arsenic in drinking water (>50 µg/L), the arsenic hair level ranges from 

3 to 10 mg/kg [39]. Chelation therapy can be used to mitigate chronic arsenic toxicity, 

but chronic arsenic exposure can cause many irreversible changes in organs and 

tissues. Currently, there is no known effective treatment leading to an elevated mortality 

rate [40, 41].  

We observed an increased EGFR protein expression level from both acute and 

chronic arsenic exposure, but EGFR activity levels were significantly different depending 

on exposure time [42], which may suggest distinct mechanisms between acute and 

chronic arsenic exposure. It is not unexpected that acute and chronic toxicities result 

from two distinct mechanisms, because 1) different biochemical mechanisms may occur 

in different tissues and organs, and/or 2) different duration time of exposure at the same 

organ may trigger different biological responses. Therefore, depending on dose and 

duration of exposure, arsenic can differently affect many different types of tissues and 

organs causing adverse health effects [43].  

Arsenic in Drinking Water 

As mentioned above, due to its toxicity and the frequency of human exposure, 

arsenic is ranked number one on the ATSDR Substance Priority List, and its 

environmental contamination is a global issue. Although the Environmental Protection 

Agency (EPA) has set the standard for arsenic in municipal drinking water of 10 ppb 

(parts per billion), which is approximately 133 nM, we are still exposed to low levels of 

arsenic on a daily basis. Exposure to arsenic is associated with an increased risk for a 

variety of health problems, such as skin and nerve damage, and cancer. More than 200 

million people worldwide are chronically exposed to drinking water that is contaminated 
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with arsenic that exceeds 10 ppb, the allowable limit of arsenic contaminant level in 

drinking water [6], and suffer from different diseases caused by drinking arsenic-

contaminated water. The major countries that suffer from arsenic contamination are 

Taiwan, Bangladesh, India, and Chile, where the arsenic concentrations in drinking 

water range from 40 µg/L to 2 mg/L [44, 45], which corresponds to 532 nM to 27 µM, 

respectively. In the United States, the maximum arsenic contaminant level in public 

drinking water is 10 ppb. However, approximately 15% of the U.S. population rely on 

private wells for their water supply that were found to have arsenic levels greater than 10 

ppb [46-49]. Ingesting arsenic in naturally contaminated food and water is the most 

common route of arsenic exposure. Unfortunately, it is difficult to obtain an accurate 

measurement of the absorbed dose of arsenic in specific tissues, mainly due to variation 

among individuals [50], including both endogenous and exogenous factors, such as 

gender and occupational exposures, respectively. In 2000, Pi et al. demonstrated the 

average blood arsenic level in people who were exposed to high levels of arsenic in their 

drinking water approximately for 18 years to be about 100 nM [51], which is the 

concentration that we used in this dissertation and from this point forward referred to as 

an ‘environmentally relevant level’ of arsenic. The lethal human adult dose for ingested 

arsenic is about 600 µg/kg/day [1], which is about 60 times higher than the standard set 

by the EPA.  

Arsenic Absorption, Distribution, Metabolism, and Excretion (ADME) 

Ingestion is the main route of environmental arsenic exposure, and arsenic is 

readily absorbed from the gastrointestinal-tract (GI tract). The liver is the main site of 

arsenic metabolism, and historically, methylation steps have been characterized as a 

critical arsenic metabolism process (Fig. 2). This arsenic methylation process was 

initially studied by Frederick Challenger and his colleagues in the 19th century [52, 53]. 
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When arsenate (pentavalent arsenic) enters the cells, it gets rapidly reduced by arsenate 

reductase to arsenite (trivalent arsenic) [54, 55]. Arsenite, then gets methylated by 

arsenic (III) methyltransferase (AS3MT) as it attaches a methyl group. AS3MT uses S-

adenosylmethione (SAM) as the methyl donor to generate the metabolites [56]. Arsenic 

metabolites including monomethylarsonous acid (MMAIII), monomethylarsonic acid  

(MMAV), dimethylarsinic acid (DMAIII), and dimethylarsenic acid (DMAV) are produced 

(Fig. 2).  

There is an alternative model for arsenic methylation that has been proposed by 

Hayakawa et al. that suggests glutathione (GSH) serves as a chaperone during the 

methylation step and the products are trivalent arsenic species [57]. Nonetheless, it is 

important to highlight that humans convert inorganic pentavalent arsenic to MMA 

species, and further into DMA species. Though both pentavalent and trivalent forms of 

arsenic are environmentally relevant, pentavalent arsenic is not readily taken into cells, 

unless the cells are phosphate deprived, as it requires phosphate transporters to enter 

the cells [58]. However, trivalent arsenic is taken into cells much faster than pentavalent, 

as it is imported by aquaporins [58], which can explain lower rate of accumulation of 

pentavalent arsenic species [59-61]. This further suggests higher potency of trivalent 

arsenic over pentavalent.  

The relative distribution of arsenic metabolites in the urine varies among 

population groups, which suggests genetic polymorphism of human methyltransferases 

[62-64], which can then increase the disease susceptibility in people.  A study that was 

done in northern Argentina has shown polymorphisms of AS3MT influencing its activity, 

resulting in variation in the urinary arsenic metabolites as the women in northern 

Argentina had a higher ratio of DMA/MMA [65], which reflects better clearance of arsenic 

from the body, increasing arsenic tolerance [66]. Similarly, another study from Chile has 

shown four polymorphisms of AS3MT that are associated with more efficient arsenic  
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Figure 2. The metabolism pathway of inorganic arsenic.  
The metabolism pathway of arsenate undergoing reduction and methylation to produce 
metabolites in pentavalent and trivalent forms. The products of inorganic arsenic 
metabolism include MMAIII, MMAV, DMAIII and DMAV. Unlike humans, rats can undergo 
another round of methylation from DMAIII to trimethylarsine oxide (TMAO or TMAV). 
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metabolism [67].  However, there are other polymorphisms of AS3MT resulting in a 

higher urinary MMA/DMA ratio that is associated with arsenic-related diseases, such as 

cancer [66]. Because the methylation process is important in elimination of arsenic from 

the systemic circulation, it is easy to assume that methylation is a detoxification process 

of arsenic as it enhances excretion of arsenic from the systemic circulation. However, all 

arsenic metabolites are toxic to different degrees. For example, DMAV, MMAIII and 

DMAIII are observed to be more cytotoxic and genotoxic than arsenite [59, 60, 68, 69]. 

Thus, arsenical metabolites are not just the by-products of inorganic arsenic metabolism; 

they, too, exert toxic effects. 

Target Organs 

Skin 

The skin is the major target organ of arsenic and usually the first manifestation of 

arsenic toxicity [70]. There is a strong association between arsenic exposure and 

dermatological effects, including blackfoot disease, hyperkeratosis and 

hyperpigmentation [71, 72]. Several in vitro studies support the epidemiological studies 

as shown in Table 3.  

Lung 

There is strong evidence that shows association between arsenic and respiratory 

illness, such as bronchitis. Though arsenic can cause non-cancer diseases, non-small 

cell lung cancer is a common consequence from arsenic exposure, especially from 

chronic arsenic exposure. A study by Smith et al. has shown that early life exposure to 

arsenic can lead to pulmonary diseases in adulthood, such as lung cancer, highlighting 

the late effects of early life arsenic exposure [73]. Several studies have shown malignant 

transformation and epithelial-mesenchymal-transition (EMT) in lung cells from chronic 

arsenic exposure shown in Table 4, as well as in in vivo studies [74-78]. Based on 
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epidemiological studies, countries, such as Inner Mongolia and Argentina observed a 

positive association between arsenic exposure and lung cancer in both sexes [79, 80]. 

Heart 

There is evidence that show strong association between arsenic exposure and 

development of cardiovascular and coronary artery diseases. Many studies suggest 

arsenic-induced oxidative stress, inflammation, endoplasmic reticulum stress and 

unfolded protein responses play roles in development of cardiovascular diseases [81]. 

Consistently, mice exposed to arsenic for 24 weeks developed lesion formation in the 

aorta [82]. However, many of these studies are established by using high doses (>5 

mg/L) of arsenic exposure [82, 83]. Most of affected populations worldwide suffer from 

chronic exposure of low to moderate level of arsenic and whether low level of arsenic 

exposure leads to cardiovascular diseases still remains inconclusive [81, 84].  

Liver 

As the liver is the main site of arsenic metabolism, it is one of the major target 

organs of arsenic. There is evidence that chronic arsenic exposure causes epigenetic 

changes in the liver that can induce liver disease by increasing inflammatory responses 

[81]. Interestingly, inflammation is an important factor that contributes to cardiovascular 

disease as well, thus there is evidence that endothelial dysfunction can be caused by 

indirect effects on the liver caused by arsenic-induced inflammation. Further, a study has 

shown increased serum levels of liver injury biomarkers can be used to measure 

cardiovascular risk as well [85], suggesting a link between liver disease and 

cardiovascular disease. Chronic arsenic exposure is also known to cause liver cancer, 

but the mechanism still remains elusive. There are several proposed mechanisms, 

including oxidative DNA damage [86-89], impaired DNA repair [90, 91], apoptotic 

tolerance [92], and epigenetic modulation [93-96]. 
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Models for studying Arsenic Toxicity 
Many epidemiological studies show adverse effects from arsenic exposure, 

including carcinogenesis in humans. However, the mechanism by which arsenic induces 

cancer development is still unclear. To elucidate the mechanism and its targets, both in 

vitro and in vivo models are widely used. 

Rodent models of arsenic toxicity 

Rodent models of arsenic toxicity are frequently used, as the target sites of 

arsenic carcinogenic effects in rodents are concordant with most of the human targets of 

arsenic [97]. However using animal models to understand the mode of action for 

inorganic arsenic-induced carcinogenesis still remains controversial [98]. The 

controversy is due to different ADME of arsenic between rodents and humans. Unlike 

humans, rats can metabolize further to trimethylarsine oxide (TMAV) [99], rendering 

rodents to be less sensitive to arsenic toxicity due to rapid clearance [22]. Not only 

species, but also strain differences in rodents, also alter sensitivity to arsenic [100].  

Despite the limitations, the rodent models are widely used and known to reflect 

human toxicological responses. Studies have observed tumorigenesis in mice exposed 

to arsenic in multiple target organs, including lungs [75], which is consistent with 

epidemiological studies [101-107]. Animal studies are also useful in understanding the 

magnitude of toxicity of arsenic species, as different forms of arsenic species have 

preferential target organs. GI tract and kidneys appear to be sensitive target organs for 

MMA, whereas bladder and kidneys are the sensitive target organs for DMA [1]. Further, 

non-cancer diseases can arise from chronic exposure to low levels of arsenic. Based on 

epidemiological studies, the majority of non-cancer disease burden and mortality from 

low level of chronic arsenic exposure is cardiovascular disease and coronary artery 
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disease [108-111], which is consistent with the animal studies [112]. These studies 

suggest that animal studies are useful in assessing adverse effects of arsenic and its 

relevance to human exposure. However, it is important to recognize that the 

pharmacokinetics of arsenic in rodent models limit our understanding of the 

pharmacodynamics of arsenic exposure in humans.  

 

In vitro models of arsenic toxicity  

In vitro models have become a crucial tool for understanding the molecular 

mechanisms underlying arsenic toxicity and carcinogenesis. By using tissue culture 

models, we can more specifically define and refine experimental conditions and 

ultimately perform more focused in vivo experiments and epidemiological studies.  

In vitro models include 2D (two-dimensional) systems, which use cells grown in a 

single layer, and 3D (three-dimensional) systems, that grow cells on a matrix or in 

suspension, to mimic the in vivo architecture, better representing in vivo scenario. 

Nonetheless, both in vitro models are reproducible and cost effective, serving as a 

platform for more in vivo experimental models. However, since in vitro models are static 

systems and look at cells in isolation, they do not simulate the real body condition. Thus, 

ultimately, animal models and epidemiological studies are needed to determine if 

predictions are physiologically relevant. The advantages and disadvantages of in vitro 

and in vivo studies are summarized in Table 2. 

 

Arsenic and Lung Cancer 

i. Arsenic in Drinking Water and Lung Cancer Development 

A common type of cancer in the U.S. that is induced by chronic exposure of 

arsenic is lung cancer [113-115]. The two major forms of lung cancer are non-small cell 

lung carcinoma (NSCLC), and small cell lung carcinoma (SCLC). NSCLC accounts for 
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Table 2: Advantages and disadvantages of in vitro and in vivo studies. 
Primary Cells Immortalized Cells In vivo animal models 

Advantages - Genetically stable 
- Physiologically relevant to in 

vivo 

- Rapid 
- Cost effective 
- Repeatable 
- Not limited lifespan 

- Relevant to effects on 
human 

- Study of complex 
interactions 

Disadvantages - Limited lifespan 
- Limited proliferative capacity 
- More expensive than 

immortalized cell culture 
-Sensitive and easy to get 

contaminated 

- Multiple changes upon 
immortalization 

- Difficult to extend results 
to a whole organism 

- Expensive 
- Time consuming 
- Ethical concerns 
- Difficult to control due 

to variables 
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more than 80% of all lung cancer. NSCLC can be divided into three major histological 

subtypes: squamous-cell carcinoma, adenocarcinoma, and large-cell lung cancer. 

Adenocarcinoma is the most common type of lung cancer in patients who have never 

smoked. Squamous-cell carcinoma is also frequently observed in non-smokers, and is 

highly associated with chronic exposure to arsenic [102, 103]. Previous studies reveal a 

direct correlation between arsenic in drinking water and cancer development [45, 80, 

102, 103, 114, 116-128]. To investigate a direct environmental factor that is associated 

with lung cancer development in individuals who have never smoked, Putila and Guo 

identified a positive correlation between arsenic levels and lung cancer incidence [114]. 

This study underscored the association between arsenic and lung cancer, independent 

of smoking and socioeconomic status in the United States [114]. Particularly, people 

who reside in the Appalachian portion of Kentucky have a higher incidence of lung 

cancer due to coal mining in Appalachia [129], as arsenic is naturally found in rocks and 

coal. This direct relationship between arsenic and lung cancer was also observed in 

countries that have high levels of arsenic in drinking water that can range up to 300 µg/L, 

which approximately corresponds to 4 µM, and these countries had some of the highest 

incidences of lung cancer in the world [123, 128, 130-132]. In Bangladesh, 1 in 16 

cancer deaths are attributable to arsenic exposure in drinking water [133].  

ii. Early Life Exposure to Arsenic and Lung Cancer

Not only post-natal arsenic exposure, but also pre-natal arsenic exposure can 

lead to lung cancer as well. As pre-natal stage is a critical period of development, young 

children in Chile, who had in utero-only and/or early-life arsenic exposure concentrations 

nearly up to 1,000 µg/L, developed lung cancer [73]. Consistently, when pregnant mice 

received 85 ppm arsenic-contaminated water only during pregnancy (gestation days 8 to 

18), the offspring had lung tumor formation in adulthood [134]. These studies highlight 
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the lethality of pre-natal exposure to arsenic, as the placenta cannot serve as a barrier to 

arsenic. A study compared the cancer progression in mice with whole-life 24 ppm 

arsenic exposure (exposure before and after birth and termination months before a full 

life span [135]) and in utero-only 85 ppm arsenic exposure (gestation days 8 to 18), and 

observed development of lung adenocarcinoma and hepatocellular carcinoma in both 

groups of mice with whole-life and in utero-only exposure [136]. However, there were 

higher incidences of cancer development in offspring that had whole-life arsenic 

exposure. These results suggest whole-life arsenic exposure can aggravate the tumor 

progression [75, 137, 138]. 

iii. Effects of Acute and Chronic Arsenic in skin and lungs in in vitro models

As skin and lungs are the two major target organs of arsenic exposure shown by 

previous human and animal studies [2-4, 75], several research studies have used these 

epithelial cell lines for the in vitro analysis of arsenic effects. The most commonly used 

cell lines are HaCaT and BEAS-2B cells, which are immortalized human keratinocytes, 

and bronchial epithelial cells, respectively.  Although studies have reported that they are 

non-malignant [139, 140], their immortality raises concerns for scientists who utilize 

these cell lines to mimic human exposure to arsenic. Thus, there are several studies that 

have used primary or patient-derived cell lines to exhibit normal human physiology and 

biochemistry. However, these cell lines are a challenge in studying chronic arsenic 

exposure due to their limited lifespan. A compilation of these in vitro studies [Tables 3 

(skin) and 4 (lung)] allows us to analyze the findings from studies utilizing a variety of cell 

lines, arsenic concentrations and exposure times. The variations in arsenic 

concentrations make direct comparisons challenging; however, the majority of these 

studies reflect the differences in the level of arsenic exposure across the globe. 
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Table 3: In vitro studies using Skin cells. 

Cell line Arsenic [  ] Duration Transformed? Cell biology Ref. 

Acute NHEK 0.001	-	0.005	
μM	and	0.1	-	4	
μM	

< 18h N/D é Cell proliferation 
éGM-CSF, TGFα, and TGFβ mRNA 

[141] 

NHK 0.001-5 μM 24h N/D é Cell proliferation 
é p53 expression, p53 binding to DNA 
Activation of PI3K/PKB/GSK3β pathway 

[142] 

HaCaT 0.5, 2, 10 μM 24h N/D é AIM2 protein expression [143] 

HaCaT 4 and 8 μM < 24h N/D é Protein and mRNA levels of p62 [144] 

HaCaT 50 μM 24h N/D é CD34 expression [145] 

HaCaT 2.5, 5, 10, 20 
μM 

24h N/D ê XPA, XPD and XPF gene expressions, 
H3K18ac 
DNA damage 

[146] 

HaCaT 0.05, 0,1, 0.5, 
1, 5	μM 

24h N/D Changes in hydrogen peroxide, 8-OHdG, 
MDA, and superoxide levels 

[147] 

HaCaT 5, 10, 20, 30, 
40 60 μM 

<24h N/D NRF1 overexpression reduces arsenic-
induced cytotoxicity and apoptosis 

[148] 

HaCaT 2.5, 5, 10, 20 
μM 

24h N/D ê XPA, XPD, and XPF gene expression 
levels, H3K18ac modification 
Induces DNA damage 

[149] 

HaCaT 0 – 40 μM 24h N/D Low dose, generation of ROS, é cell 
survival and m6A and methyltransferases 
High dose, écytotoxicity, oxidative stress, 
cell death, ê m6A and methyltransferases

[150] 

Subacute/ 
Subchronic 

HaCaT 2.5 uM 8w Yes PI3K/AKT pathway-dependent Cyclin D1 
expression 

[151] 

HaCaT 0.6 μM* 18w Yes é Colony formation and growth rate 
é CD44v6 expression 
é G2/M and S phases 
é Activating NFkB and p53 genes 

[152] 

HaCaT 500 nM 4w N/D é miRNA 21, 200a and 141 [153] 

HaCaT 1 μM 15w Yes ê let-7 
Activation of Ras/NFkB signaling pathway 

[154] 

HaCaT 0.5, 2, 10 μM 48 and 
72h 

N/D At low concentration- é colony formation 
and proliferation 
At high concentration-ê cell viability, é 
cleaved caspase-1 and AIM2 
inflammasome 

[143] 

HaCaT 100 nM 3 and 7w N/D Arsenite-dependent small RNA and mRNA 
differential expression 

[155] 

HaCaT 100 nM 7w N/D é G2/M phase 
644 miRNA differentially expressed 

[156] 

HaCaT 0.6 μM* 8w N/D é miRNA 21, PTEN, PCDC4 [157] 

HaCaT 0.05 and 0,1 
μM 

15w N/D é Cell proliferation and cell cycle 
progression from G1 to G2/M phase 
é Total Cyclin D1, p-AKT, p-GSK-3b, p-
p21, p-p27 
ê p-Cyclin D1, p21, p27 

[158] 

HaCaT 0.1 and 0.2 
μM 

< 4w Yes é Cell proliferation and TGIF expression, 
invasion 
EMT transition markers alteration, MMP 
activation, invadopodia formation. 

[159] 

HaCaT 100 nM 8w N/D é Structural abnormalities in cells 
overexpressing has-miRNA 186. 
é BUB1 expression 

[160] 

HaCaT 5 μM <72h N/D é ZRANB2 expression 
ZRANB2-directed TRA2B splicing impaired 
Arsenite displaces Zn2+ from ZRANB2 zfms

[161] 

HaCaT 1 μM 12w N/D é p62, Nrf2, HO-1 and SOD expression 
levels 
ê Autophagy by up-regulating mTOR 

[162] 



www.manaraa.com
18	

* The original study used in ppb
Duration in hours (h), days (d), and weeks (w) 
GM-CSF: Granulocyte-macrophage colony-stimulating factor; TGFα: Transforming growth factor alpha; TGFβ: Transforming 
growth factor beta; PI3K: Phosphoinositide 3-kinase; PKB: Protein kinase B (also known as Akt); AIM2: Absent in melanoma 
2; CD34: XPA: Xeroderma pigmentosum complementation group A; XPD: Xeroderma pigmentosum complementation group 
D; XPF: Xeroderma pigementosum complementation group F; H3K18ac: Histone 3 Lysine 18 acetylation; NFkB: Nuclear 
factor kappa-light-chain-enhancer of activated B cells); let-7: Lethal-7; GSK-3β: Glycogen synthase kinase 3 beta; BUB1: 
Budding uninhibited by benzimidazoles 1; ZRANB2: Zinc finger RANBP2-type containing 2; TRA2B: Transformer 2 beta; 
UVB: Ultraviolet B; MMP: Matrix metallopeptidase; CK: Creatine kinase; Nrf2: Nuclear factor erythroid 2-related factor 2; 
TLR4: Toll ligand receptor 4; CXCR4: C-X-C motif chemokine receptor 4;  

Activation of PI3K/Akt/mTOR pathway, 
induced autophagy deficiency, changes in 
intracellular hydrogen peroxide, superoxide, 
MDA and 4-HNE 

HaCaT 1 μM 20w Yes é m6A level 
m6A mediates migration and apoptosis and 
attenuates p53 activation to mediate 
arsenic- induced transformation 

[163] 

HaCaT 0.05, 0.1 μM 15w N/D é Cell proliferation, cell cycle progression 
from G1 to S/G2M phase, phosphorylation 
of GSK-3β/Cyclin D1, p21 and p27 

[158] 

HaCaT 1 μM 20w Yes é circLRP6 and ZEB1 levels 
Induces the EMT 

[164] 

Chronic HaCaT 100 nM 28w Yes Morphology changes 
Resistant to UVB-induced apoptosis 
é Active MMP-9, keratin-1, 10, involucrin, 
loricrin 
é CK2 expression and nuclear activity 
é Antioxidant level 
ê Nrf2-mediated antioxidant response 

[165] 

HaCaT 100 nM >25w Yes é MMP-9 secretion 
é CK1, 10, 13, 5, 8, 14, 18 and 15, 
involucrin and loricrin 

[166] 

HaCaT  100 nM 28w Yes 26 miRNAs significantly altered [167] 

HaCaT 100 nM 40w Yes é Expression of TLR4, CD34, CXCR4, 
MMP2 
é invasion 

[168] 

HaCaT 100 nM 30w Yes é p62 expression, p62-NRF2 feedback 
loop 
Dysregulated autophagy 

[169] 

HaCaT 100 nM 25w Yes Progressive aberrant DNA methylation, 
alteration of methylation-expression 
landscape 

[170] 
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Table 4: In vitro studies using Lung cells. 
Cell line Arsenic [  ] Duration Transformed? Cell biology Ref. 

Acute 16HBE14o- 0.2-3.8 μM*	 < 24h N/D ê Wound repair 
é MMP9 mRNA and protein expression 
levels as well as activity 

[171] 

BEAS-2B 0.01-10	μM < 5h N/D é EGFR activity, Hb-EGF mRNA level, p-
ERK and cyclin D1 expression 

[172] 

BEAS-2B 1 μM 24h N/D é miRNA 21 expression 
Activation of STAT3 

[173] 

HBE 0.5, 1, 2, 5, 
10 μM 

24h N/D At low level- ERK activation and prevent 
degradation of HIF-2α. 
At high level- JNK activation to prevent 
degradation of HIF-1α. 

[174] 

BEAS-2B 0.5, 1, 2 μM 24h N/D ê miRNA 199a expression [175] 

BEAS-2B 1 μM 24h N/D ê PDCD4  
é Twist1 expression 

[176] 

BEAS-2B 0.25 μM 24h N/D é IL6, IL8, TNFα and GM-CSF production [177] 

HBE 1- 60 μM < 24h N/D ê cell viability  
é Nrf2 signaling pathway 
Oxidative damage 

[178] 

HBE 1- 60 μM < 24h N/D ê Ca2+ homeostasis of ER 
Apoptosis through mitochondrial 
dysfunction, nuclear translocation of NF-
kB 

[179] 

16HBE14o- 0.8 and 3.9 
μM 

24h N/D ê Ca2+ response to wound healing, P2Y- 
and P2X-mediated Ca2+ signaling 
responses to ATP 

[180] 

Subacute/ 
Subchronic 

HAEC 133, 333, 
667, 1335, 
2670, 6675 
nM* 

< 4D N/D ê mucin5AC and 5B at both mRNA and 
protein levels 
é gene expressions of GMLM, HO1 and 
NQO1 
Target retinoic acid (RA) signaling 
pathway 

[181] 

LEC 5 μM < 48h N/D é Intracellular oxidant level 
é Heavy subunit of γ-GCS mRNA 
é c-fos and c-jun mRNA, and NFkB DNA 
binding activities 

[182] 

CFBE41o- 1.3-667 nM Up to 4D N/D Activation of E3 ubiquitin ligase to promote 
degradation of CFTR. 

[183] 

HELF 1 μM 15w Yes é miRNA 21 expression 
Activation of ERK and NFkB 

[184] 

16HBE14o- 130 or 330 
nM 

For 4-5w N/D ê Wound repair, ATP-mediated Ca-
signaling, P2Y receptor function and 
molecular expression 

[185] 

HBE 1 μM 15w N/D EMT 
é Twist1 and Bmi1 regulated by HIF-2α 

[174] 

BEAS-2B 1 μM 15w Yes Activation of STAT3 
é miRNA 21 and secretion of IL-6 

[173] 

HELF 1 uM 15w Yes Activation of ERK/NFkB, JNK/c-Jun, and 
Akt. 
é miRNA 21 
ê PDCD4 and SPRY1 protein expression 

[186] 

BEAS-2B 0.25 μM < 16w Yes é IL6 and GM-CSF production [177] 

BEAS-2B 0.1, 0.5, 1 	
μM 

< 16w Yes ê H3K4me3, H3K9me2, HMT activities 
é KDM5A, HDM activities 

[187] 

BEAS-2B 1 μM 15w Yes ê PDCD4 expression 
é Twist1 and miRNA 21 expression levels 

[176] 

HBE 2.5 μM 13w Yes é miRNA 155 expression 
ê NRF2 levels 

[188] 
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* The original study used in ppb or μg/L
Duration in hours (h), days (d), and weeks (w). EGFR: Epidermal growth factor receptor; Hb-EGF: Heparin binding 
epidermal-like growth factor; ERK: Extracellular signal-regulated kinase; STAT3: Signal transducer and activator of 
transcription 3; IL: Interleukin; HIF: Hypoxia-inducible factor; JNK: c-Jun N-terminal kinase; PDCD4: Programmed cell 
death 4; TNFα: Tumor necrosis factor alpha; γ-GCS: Gamma-glutamylcysteine cynthetase; P2Y: Purinergic receptors; 
EMT: Epithelial mesenchymal transition; BMI1: BMI1 polycomb ring finger oncogene; SPRY1: Sprouty1; H3K4me3: 
Histone 3 Lysine 4 trimethylation; H3K9me2: Histone 3 Lysine 9 dimethylation; HMT: Histone methyltransferase; HDM: 
Histone demethylase; KDM5A: Lysine demethylase 5A; PIK1: Phosphatidylinositol 4 kinase PIK1; CCL18: C-C motif 
chemokine ligand 18; CXCL11: C-X-C motif chemokine 11; SATB2: Special AT-rich sequence-binding protein 2; PALA: N-
phosphonacetyl-l-aspartate; Rb: Retinoblastoma; mTOR: mammalian target of rapamycin; p70S6K1: p70-S6 kinase 1; 
COX-2: Cyclooxygenase-2; HMOX1: Heme oxygenase 1; PTEN: Phosphate and tensin; SLC38A3: Solute carrier family 
38 member 3; TGFα: Transforming growth factor alpha 

BEAS-2B 0.1-10 	μM < 48h N/D é mitotic accumulation 
Plk1 activation 

[189] 

BEAS-2B 0.25 μM 12w Yes Macrophage activation 
é IL10, TGFβ, CCL18, IL12 and CXCL11 
secretion 
ê Autophagic activity 

[190] 

BEAS-2B 1.25, 2, 2.5, 
5, 10 μM 

48h and 
6w 

Yes ê miRNA 31 expression 
é SATB2 protein and mRNA levels  

[191] 

BEAS-2B 0.25 and 2.5 
μM 

48h and 
16w 

Yes Morphological, motile and proliferative 
changes, activation of autophagy 
é EMT via MEK/ERK1/2 signaling 

[192] 

BEAS-2B 0.5 μM 12w Yes é Increased metastatic potential 
ê Metastatic potential of arsenic-
transformed lung epithelial cells from loss 
of SOX9 

[193] 

HBE 2.5	μM 13w Yes é miR- 106b and 18b 
m6A level and its modification controlled by 
its methyltransferases and demethylase 

[194] 

HBE 66.5, 133, 
and 667 nM* 

6D N/A ê Expression of host defense genes, 
lysozyme release and bactericidal activity 
Alters transcriptional responses to 
Pseudomonas aeruginosa 

[195] 

HBE 1 μM 15w Yes é HIF-2α, miR-191, MMP-9, WT1 and 
VEGF 
ê BASP1 

[196] 

HBE 1 μM 22w Yes é Nrf2-mediated antioxidant levels 
ê ROS and MDA levels 

[197] 

HBE 1 μM 15w N/D é Cell proliferation, STAT3 activation 
Transfer of miR-21 via exosomes 

[198] 

HBE 1 μM 15w Yes é Angiogenesis in vitro and in vivo, VEGF 
expression 

[199] 

HBE 1 μM 15w Yes é Inflammation, IL-6 and IL-8 via HIF-2 α [200] 

16HBE14o- 0.8 and 3.9 
μM 

5D N/D Alters protein and mRNA levels of tight 
junction proteins in airway epithelial cells. 

[201] 

Chronic SAEC 6.7 μM* 24w Yes é Micronuclei incidence, PALA resistant 
characteristics, c-H-ras, c-myc, and c-fos 
protein expression. 
ê WT p53 expression and 
hyperphosphorylated Rb 

[202] 

BEAS-2B 0.25, 1, 5 μM 26w Yes é Cell proliferation 
Activation of AKT, ERK, mTOR and 
p70S6K1 pathways 

[203] 

BEAS-2B 1 μM 26w Yes ê miRNA 99 expression 
é COX-2 and HIF-1α 

[175] 

HPL-1D 2 μM 38w Yes Activation of AKT, ERK 
é Cell proliferation, EMT markers, 
HMOX1 and HIF-1α mRNA levels, MMP2 
activity 
ê PTEN and SLC38A3 mRNA levels 

[78] 

BEAS-2B 0.25 μM 24w Yes é miRNA 301a [204] 

BEAS-2B 100 nM 24w N/D é TGFα protein and mRNA levels, EGFR 
expression and activity 

[42] 

HBE 2 μM < 48h N/D ê Mitochondrial function 
é Glycolytic metabolism, M2 polarization 
of macrophages 

[205] 

BEAS-2B 1 μM 26w Yes é HB-EGF, EGFR and ERK activation, 
HIF-1α expression 

[206] 
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The range of concentrations is consistent with the notion that there is no “correct” 

arsenic concentration or consensus in the field. To understand the mechanism of 

arsenic-induced diseases, both acute and chronic arsenic exposures were widely used 

in in vitro studies. Because both skin and lungs are the major target organs from arsenic 

exposure, this dissertation focuses on both acute and chronic arsenic effects on these 

organs. 

Acute arsenic study in vitro 

As discussed in the health effects of arsenic section, acute arsenic exposure 

does not lead to human carcinogenesis. However, in both skin and lung cell lines, acute 

(less than 24 hours) and subacute/subchronic (>24 hours but < 24 weeks) arsenic 

exposures alter several cell cycle regulated genes, particularly Cyclin D1, and 

contributes to increased G2/M phase of cell cycle [152, 156, 158, 172]. Multiple lines of 

evidence show that cell cycle deregulation contributes to the development of cancer 

[207, 208]. Furthermore, arsenic-exposed skin and lung cells have altered miRNA 

expression, mostly from acute and subacute/subchronic exposure. For example, miRNA-

21 is upregulated in both types of cells from arsenic exposure [153, 157, 173, 176]. 

Increased expression of miRNA-21 is found to be a characteristic of cancer cells and 

alters cellular phenotypes, i.e., increased cell proliferation and invasion [209-211]. 

Despite these alterations, acute arsenic exposure does not induce cancer mainly due to 

a short duration of the exposure.  

Chronic arsenic study in vitro 

The chronic arsenic exposure that is associated with carcinogenesis in humans 

can be recapitulated in in vitro studies by exposing either lung or skin cells to arsenic for 

> 24 weeks. Recognizing the need of elucidating arsenic-induced carcinogenesis, 
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investigators have tried to identify the molecular basis for cell transformation and found 

the chronic arsenic treatment leads to an increase in metalloproteinase activity [165, 

166, 168], an increase in invasion and proliferation [78, 168, 203], and alterations in 

gene expression that are involved in cell proliferation [78, 165, 166, 168, 175]. These 

observed data lead to further studies in understanding the mechanism of arsenic-

induced transformation, as the clear mechanism of arsenic-induced carcinogenesis still 

remains elusive.  

Interestingly, in skin cells, chronic arsenic exposure increased secretion of matrix 

metallopeptidases (MMP) and creatine kinases (CK) [165, 166, 168]. Particularly MMP9 

has a role in remodeling extracellular matrix and cell surface protein cleavage. Its 

increased expression and activity are widely associated with cancer development [212]. 

Several population studies have shown increased MMP9 levels in individuals who 

ingested arsenic-containing drinking water at least for one year [213-216], which renders 

MMP9 as a strong prognostic marker for arsenic-induced cancer, as well as a possible 

driver of arsenic-induced carcinogenesis. Thus, in vitro studies can serve as reliable 

tools that reflect human exposure to arsenic. 

Additionally, it is also important to note that the effects from chronic arsenic 

exposure may or may not occur under conditions of an acute exposure. Therefore, it is 

critical to have proper controls and identify the endpoint of each study to generate the 

most biologically meaningful in vitro studies. 

iv. Proposed Mechanisms of Arsenic-induced Carcinogenesis

Proposed mechanisms of arsenic-induced carcinogenesis include oxidative 

stress [217-223], epigenetic changes including histone modification, miRNA expression, 

DNA methylation [93, 224-234], aneuploidy [235], and activation of oncogenic pathways 

[172, 236-253], such as the epidermal growth factor receptor (EGFR). The EGFR is a 

well- established biomarker of cancer [254-257], and studies have found that the EGFR 
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is overexpressed in a variety of tumors and cancer cells, which correlates with poor 

patient prognosis [258-273], including NSCLC [274-276]. Both previous studies and our 

studies have shown acute arsenic exposure induces overexpression of EGFR in human 

bronchial epithelial cells [277] (Fig. 3). Despite a direct association between 

supraphysiological levels of arsenic and lung cancer, how chronic exposure to “a 

physiologically relevant” level of arsenic affect EGFR expression and signaling are not 

known. 

 

EGFR Biology 

i. Structure and Activation of EGFR 

EGFR is a receptor tyrosine kinase (RTK) localized on the cell surface (Fig. 4). 

As one of the ErbB family receptors (EGFR, ErbB2, ErbB3, and ErbB4), EGFR is 

activated by specific ligands, and there are 7 endogenous EGFR ligands (epidermal 

growth factor (EGF), transforming growth factor-α (TGFα), heparin binding epidermal 

growth factor (HB-EGF), amphiregulin (AREG), betacellulin (BTC), epigen (EPGN), 

epiregulin (EREG)). Of these ligands, HB-EGF and BTC are known to have a high 

affinity for the receptor and have robust signaling [278-280]. The EGFR and the other 

ErbB family members can be divided into three main domains: extracellular domain, 

transmembrane domain, and intracellular domain, which consists of a kinase domain 

and tyrosine residues on the C terminus that serve as docking sites for many 

downstream proteins. Ligand binding to the extracellular domain of the EGFR leads to a 

conformational change that allows receptor dimerization and activation of the intrinsic 

kinase activity. Once activated, the kinase from one receptor trans-phosphorylates 

tyrosine residues on the intracellular carboxy-terminus of its receptor pair (Fig. 4). These 

newly formed phosphotyrosines then serve as docking sites for downstream signaling  
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Figure 3. Acute arsenite induces overexpression of EGFR.  
Immunblot of EGFR and phosphotyrosine 1068 (pY1068) in Beas-2B cells treated with 
arsenite at the indicated concentrations for 24 hours. 10 ng/mL of EGF treatment in 
Beas-2B cells was used as a positive control. EGF was stimulated after 2 hours of 
serum-starvation, and it was stimulated for 7 minutes. The samples were resolved on 
7.5% SDS-PAGE.  
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Figure 4. EGFR structure.  
When the receptor is not occupied by a ligand, the cysteine-rich regions of the 
extracellular domain of the receptor interact with each other and maintain a “closed” 
conformation. When a ligand binds to the ligand binding domains of the extracellular 
domain, the EGFR undergoes a conformational change, exposing cysteine-rich regions. 
These regions, then, interact with other exposed cysteine-rich regions of another ErbB 
family receptor. This allows receptor dimerization and activation of the intrinsic kinase 
activity. Once activated, the intracellular kinase from one receptor trans-phosphorylates 
tyrosine residues on its receptor pair. These newly formed phosphotyrosines then serve 
as docking sites for downstream signaling proteins that mediate cell proliferation, 
survival, tumorigenesis, and differentiation. Red=ligand; green=cysteine-rich regions; 
blue=ligand-binding domains; purple=inactive kinase domains; yellow=active kinase 
domains.  
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proteins (effectors) that mediate cell proliferation, survival, tumorigenesis, and 

differentiation. 

ii. EGFR Function in Embryonic Development

The EGFR is a critical component in development. EGFR expression was 

observed in embryogenesis, and its ligands, specifically EGF and TGFα, were also 

expressed from 4- to 8-cell stage of embryogenesis [281-286]. The co-localization of the 

ligands with the EGFR throughout the critical stages of embryogenesis underscores the 

requirement of full activation of EGFR for proper development. Therefore, EGFR null 

and/or EGFR mutations are deleterious. Earlier studies have found EGFR null mice were 

either embryonically lethal or died shortly after birth [287]. The mice that had EGFR 

mutation manifested changes in hair and skin, which support the roles of EGFR in 

epithelial development [288, 289].  

iii. The Endocytic Trafficking Pathway of EGFR

When a ligand binds to the EGFR, the activated EGFR gets internalized via 

clathrin-coated pits into the cell. Once the clathrin is shed, the vesicle then fuses with the 

early endosomes [290]. From the early endosomes, the receptors can have two different 

fates; the receptors can move back to the plasma membrane from the early endosomes 

(recycling), or the receptors can be degraded via lysosomes. For receptors to degrade, 

the receptors-containing early endosomes increase acidity to “mature” into the late 

endosomes [291]. The late endosomes then fuse with lysosomes to degrade the 

receptors (Fig. 5). The degradation of EGFR is tightly regulated to control the 

downstream signaling events, such as proliferation. Thus, improper regulation of 

degradation of EGFR can lead to overstimulation of proliferative signaling and contribute 

to cancer development. When the receptors are activated, the tyrosine residues of the  
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Figure 5. The endocytic trafficking pathway of EGFR.  
When a ligand binds to the receptor, the receptors become activated. The activated 
tyrosine kinase domains then induce trans-phosphorylation of the tyrosine residues on 
the carboxy-terminus of its receptor pair. This phosphorylation triggers c-Cbl to be 
recruited to the activated receptors and ubiquitinates the receptors. The activated 
receptors get internalized via clathrin-coated pits into the cell. Once the clathrin is shed, 
the vesicle then fuses with the early endosomes. From the early endosomes, the 
receptors can have two different fates; the receptors can move back to the plasma 
membrane from the early endosomes (recycling), or the receptors can be degraded via 
lysosome.  
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kinase domain of the receptors get phosphorylated and get internalized into the cell. This 

receptor activation triggers c-Cbl, which is an E3 ubiquitin ligase, to be recruited and 

binds to a specific phosphorylated tyrosine residue (pY1045) of the kinase domain of the 

receptor [292]. This binding causes ubiquitination of the receptors and the receptors get 

marked for degradation via lysosomes [293, 294]. As mentioned earlier, the other fate of 

the internalized receptors is to recycle back to the plasma membrane. Previous studies 

have found even without any ligand stimulation, about 10% of the EGFR constitutively 

internalize and recycle back to the plasma membrane [295], predominantly by the basal 

expression of TGFα, an EGFR ligand that is involved in the recycling of the receptors 

[296]. EGF, on the other hand, is a well-known EGFR ligand, and EGF-stimulated EGFR 

undergo degradation. The different effects between TGFα and EGF ligands are mainly 

due to their sensitivity to the acidic environment [297]. TGFα is pH sensitive, and it is 

known to dissociate from the receptors at pH of about 6.8, whereas EGF is dissociated 

from the receptors at pH of about 5.8 [298-300]. Thus, TGFα gets dissociated from the 

early endosome compartment (pH of about 6.8), which allows the EGFR to recycle back 

to the plasma membrane, whereas EGF:EGFR complex endure the acidic environment 

until they get degraded [300]. The ErbB2 expression levels also affect the recycling 

pathway of the receptors. Studies have observed decrease in EGF-stimulated EGFR 

degradation in cells that overexpress ErbB2 [301, 302]. Further studies supported these 

observations by demonstrating ErbB2 overexpression preventing clathrin-mediated 

endocytosis of EGFR [301, 303]. However, a clear mechanism for ErbB2-induced 

impairment of EGFR endocytosis remains elusive.  

EGFR and Cancer 

There are four main events that can perturb the EGFR regulatory mechanisms, 

which all contribute to cancer development: 1) overexpression of EGFR,  
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2) overproduction of its ligands, 3) improper receptor trafficking, and 4) the EGFR kinase

domain mutations. 

i. Overexpression of EGFR

The overexpression of EGFR (as compared to adjacent non-cancerous tissue) is 

seen in many cancers, including colorectal cancer, pancreatic cancer, NSCLC [276, 304-

310], and gliomas [311-316], and is associated with a poor prognosis. Under 

pathological conditions, such as cancer, the normal regulatory mechanisms of the 

signaling pathways are perturbed, resulting in hyperactivation of the signaling pathways. 

The overexpression of EGFR and its association with a poor prognosis can be explained 

by increased sites for the ligands to bind to the receptors, leading to enhanced 

downstream signaling events, such as proliferation.  

ii. Overproduction of the EGFR Ligands

An increase in synthesis of ligands above the basal levels also triggers 

enhancement of the EGFR-induced activation of proliferative pathways. High levels of 

EGFR ligands, including EGF, TGFα, AREG, and BTC, were observed in cancers [317, 

318]. The frequency of overexpression of EGFR and TGFα, has been observed in 

NSCLC patients, and predicts a poor outcome [305]. All ligands function similarly to 

EGF; they bind to the ligand binding domain of the receptors, and induce a 

conformational change in the receptors that leads to dimerization of the receptors and 

increased tyrosine kinase activity. However, their tissue distribution, expression 

regulation, and binding affinity and preferences on the receptors differ from one another, 

all of which can alter EGFR signaling by changing the endocytic trafficking itinerary [319-

323]. 
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iii. Improper Receptor Trafficking

Disruption of proper EGFR trafficking is known to contribute to cancer  

development [324-331] mainly due to poor downregulation of the receptors and 

sustained downstream proliferative signaling. Without any ligand stimulation, the 

unstimulated receptors predominantly localize on the surface of the cells. However, 

when the cells are stimulated with ligand, such as EGF, the internalized receptor co-

localizes with the early endosomes within 10 minutes post-stimulation [332]. Over time, 

the EGF-stimulated cells will have reduced staining of the EGFR in the early endosome 

compartment, due to its lysosomal degradation. However, when the EGFR endocytic 

trafficking pathway is perturbed, specifically between the early and the late endosomes, 

the EGFR will remain in the early endosome compartment and still active, prolonging the 

signaling as the EGFR accumulate in the early endosome compartment [333]. A 

previous study observed an increase in the EGFR protein expression level in response 

to prevention of the EGFR degradation [328], which suggests improper EGFR endocytic 

trafficking can contribute to both overexpression and hyperactivation of EGFR, leading to 

carcinogenesis. Thus, abnormalities in the endocytic trafficking of signaling receptors are 

now well-established hallmarks of malignant cells [334, 335].  

iv. Kinase Domain Mutations.

Not only overexpression of the wild type EGFR, but also expression of the 

mutant EGFR kinase domain can contribute to cancer development. The most common 

EGFR kinase domain mutation is EGFRvIII, which is a deletion of residues 6 to 273. 

Despite the inability to bind to the ligands, EGFRvIII is known to induce constitutive 

activation and trigger downstream signaling [336]. This form of receptor is known to 

enhance tumorigenesis, proliferation, and metastasis of tumors [337-340]. Such 

mutation is commonly observed in about 40% of glioblastoma cases [341-343]. Even 
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though the overexpression of EGFR is commonly observed in NSCLC cases, there are 

only about 10 to 30% of NSCLC patients who are EGFR mutant positive [344]. The most 

common EGFR kinase domain mutations in NSCLC patients are exon 19 deletion, which 

is near the ATP-binding pocket that tyrosine kinase inhibitor (TKI) targets, and a 

mutation in exon 21 by substituting leucine 858 with arginine, or L858R [336, 345]. 

These kinase mutations cause constitutive activation of the EGFR by destabilizing the 

inactive conformation of EGFR [346, 347]. Therefore, NSCLC patients with the EGFR 

kinase domain mutations have better clinical response to TKI, as the mutants are more 

sensitive to TKI than the wild type EGFR [348, 349]. Unfortunately, patients with mutant 

EGFR kinase domain acquire resistance to the TKI therapy. A common EGFR kinase 

domain mutation that leads to resistance is T790M (substitution of threonine 790 with 

methionine). The location of T790 is significant, as it is located in the ATP binding pocket 

[350]. This substitution allows structural conformation of the receptors to gain near wild 

type levels of ATP affinity and allow ATP to bind to the kinase domain with higher affinity 

than the drug [350, 351], which supports T790M-induced resistance to TKI. Additionally, 

Shtiegman et al. observed decrease in endocytosis and downregulation of L858R- and 

T790M-containing EGFR, and continuous phosphorylation status of the receptors 

several hours following EGF stimulation, unlike the wild type receptors [326], which 

suggests prolonged downstream signaling and predisposition to lung cancer. 

Particularly, L858R-containing EGFR mutant had impaired recruitment and 

phosphorylation of c-Cbl with EGF stimulation [326].  

v. EGFR-targeted Chemotherapy

Because of the importance of EGFR in cancer development, there have been 

several chemotherapeutic agents that target EGFR. The EGFR-targeting 

chemotherapeutic agents can be divided into two main classes: monoclonal antibodies 
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and small molecule kinase inhibitor. An example of the monoclonal antibody is 

Cetuximab, which targets the extracellular domain of the receptor to prevent 

ligand:receptor interactions. This drug is approved for treatment of cancers, such as 

colorectal cancer and squamous cell carcinoma of the head and neck (NCI, 2018). 

Erlotinib and getfitnib are examples of TKI, which bind to the kinase domain of the 

receptor to prevent activation of the downstream proteins and their signaling. Erlotinib is 

widely used as first-line therapy to treat particularly NSCLC patients [352]. As mentioned 

earlier, patients with mutant EGFR, such as L858R, have good responses to TKI, as 

they induce constitutive activation of the kinase, and such activity is found to increase 

sensitivity to the drug [348, 349, 353]. These specific mutations have higher affinity for 

TKI than does the wild type EGFR, and they have lower affinity for ATP, as compared to 

the TKI [346, 354]. Consistently, NSCLC cells with the mutant EGFR kinase domain 

have lower IC50 value of TKI, as compared to the wild type EGFR [355]. Furthermore, 

TKI inhibited both EGFR activation and proliferation, and induced apoptosis in NSCLC 

cells with the mutant EGFR kinase domain, but it did not induce apoptosis in NSCLC 

cells with the wild type EGFR [348, 356, 357]. Interestingly, when the ErbB2 expression 

was blocked by monoclonal antibodies, enhancement of the mutant receptors’ 

downregulation was observed [326], which highlights the importance of ErbB2 

regulation. Thus, these studies suggest the complexity of the mutant receptors, and 

more specific targets-driven chemotherapeutic agents are needed. There are several 

irreversible inhibitors that target these mutations, and they act through covalent binding, 

but they are yet to be approved [350]. 

EGFR and Arsenic-induced Carcinogenesis 

As mentioned above, both previous studies and our data have shown that acute 

high levels of arsenite exposure induce the overexpression of EGFR in human bronchial 
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epithelial cells [277] (Fig. 3). Understanding the molecular mechanism of such 

phenomena will contribute to developing new drug targets. This dissertation examines 

the effect of an environmentally relevant level of arsenite on the EGFR signaling. 

Arsenic readily accumulates in epithelial cells as they have high content of thiol 

groups, and EGFR plays a critical role in epithelial development. The interaction 

between arsenic and thiol groups supports the role of arsenic in lung cancer 

development through EGFR signaling axis in epithelial cells. In this dissertation, I 

suggest a potential role of chronic arsenite exposure in the regulation of components of 

the EGFR signaling axis. A previous study used micromolar ranges of arsenite, and 

observed increased level of EGFR ligand mRNAs, specifically HB-EGF [172]. HB-EGF is 

seen in a variety of cancers, such as colorectal, cervical, breast and gastric cancers 

[358-362]. Consistently, an earlier study demonstrated increase in TGFα mRNA 

expression levels in mice chronically exposed to arsenic-contaminated drinking water 

[363]. Also, overexpression of TGFα was observed in the tumor from nearly 50% of 

primary NSCLC patients [305]. As mentioned earlier, TGFα is an EGFR ligand that is 

involved in the constitutive recycling of EGFR, which can delay the EGFR lysosomal 

degradation [296], resulting in overexpression of the receptors. Thus, these studies 

support the hypothesis that arsenic has an impact on regulation of the ligands, resulting 

in overexpression of the EGFR. 

There is a scant amount of studies that observe the effect on the receptor 

trafficking upon chronic toxicant exposure. A study has shown arsenic increases protein 

levels of Rab4, a protein involved in the recycling of EGFR [364]. This study suggests a 

potential role of arsenic in altering the endocytic trafficking of EGFR. Under normal 

conditions, EGFR internalizes via clathrin-mediated endocytosis, but at high doses of 

EGF, the EGFR undergoes clathrin-independent endocytosis, including caveolin-

mediated endocytosis [365]. This interplay between clathrin-mediated endocytosis and 
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caveolin-mediated endocytosis controls the expression of EGFR in the cells to prevent 

overstimulation, as caveolin-mediated endocytosis preferentially couples to the EGFR 

degradation [366]. In our study, we observed overexpression of EGFR in response to 

chronic arsenic exposure (Fig. 7), suggesting a possible role of arsenic in dysregulating 

the interplay between the two distinct endocytic trafficking pathways, which contributes 

to arsenic-induced carcinogenesis by allowing overstimulation of EGFR signaling. 

Additionally, acute high levels of arsenic exposure is known to prevent microtubule 

disassembly by losing the integrity of the tubulins and mircotubules [367], and 

microtubules are critical components in movement of proteins between the organelles 

[368]. Thus, the EGFR endocytic trafficking pathway is a potential target site of chronic 

arsenic to induce overexpression of EGFR in the cells. Disruption of proper EGFR 

trafficking is known to contribute to cancer development, such as lung, pancreatic, and 

breast cancers [326, 328, 369]. Despite the importance of proper EGFR trafficking in 

cancer development, there has been no study that tested alterations in the route of 

EGFR trafficking from chronic arsenic exposure.  

Significance and Statement of Specific Aims 

Arsenic is ubiquitous; it can be found in water, air, and food. More than 200 

million people worldwide are chronically exposed to arsenic [6]. These areas include 

Bangladesh, Chile, Mexico, and approximately 1% of the U.S. population, who rely on 

private wells for their water supply (US EPA, 2012a, 2012b) that have arsenic levels 

greater than 10 ppb [46-48, 370]. There is a direct correlation between arsenic in 

drinking water and cancer development [45, 80, 102, 103, 116-128], including non-small 

cell lung cancer (NSCLC). Proposed mechanisms of arsenic carcinogenicity include 

epigenetic [93, 224-226, 229, 230, 232], oxidative stress [217-223, 364, 371, 372], 

alteration in miRNA expression [153, 157, 173, 176, 188, 225, 228, 229, 236, 373-379], 
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aneuploidy [235], and activation of oncogenic pathways [172, 237-242, 244-246, 249, 

250, 252, 253, 377]. However, a clear arsenic-induced carcinogenic mechanism still 

remains elusive. To elucidate the carcinogenic mechanism, we are focusing on an 

established prognostic marker of cancer, EGFR [254-257]. The EGFR is overexpressed 

in a variety of tumors and cancer cells, and is commonly observed in NSCLC [274-276]. 

Both previous studies and our data (Fig. 1) show that acute arsenic exposure (1-10 µM) 

induces overexpression of the EGFR [237, 277]. However, how chronic arsenic 

exposure affects the EGFR expression and its signaling axis remain elusive.  

My research goal was to understand how chronic arsenic exposure disrupts the 

EGFR signaling axis, contributing to overexpression of EGFR, and to develop strategies 

to mitigate the effect of arsenic toxicity. This aligns with the National Institute of 

Environmental Health Sciences’ mission of discovering the impact of environmental 

toxicants on people to promote healthier lives. My hypothesis was that chronic arsenic 

exposure changes the EGFR signaling axis, which contributes to EGFR overexpression. 

The long-term goals were not only to identify novel roles of chronic arsenic exposure in 

the EGFR endocytic trafficking, but also to identify the key driver of chronic arsenic-

induced increased cell migration that may contribute to developing a novel therapeutic 

target of lung cancer. My research was achieved by using BEAS-2B cells, which are 

non-malignant human lung bronchus epithelial cells generated by SV40 transfection 

[380]. They have been widely used to study heavy metal-induced carcinogenesis [381-

385], and they are commonly used in arsenic studies because the lungs are known to be 

one of the major target organs of inorganic arsenic carcinogenesis [113, 175].  

 My hypothesis was tested with the following aims: 

Aim 1: Measure the impact of acute and chronic arsenic exposure on the 

expression levels of the EGFR and its ligands. 
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In order to achieve this aim, we performed western blots, RT-qPCR and ELISA. The goal 

of this aim was to determine the expression differences in EGFR as well as its ligands 

between untreated and arsenic treated cells and it is discussed specifically in chapter 2. 

Aim 2: Determine the route and kinetics of the EGFR trafficking in arsenic-treated 

cells. 

We used flow cytometry to measure the cell surface. The goal of this aim was to 

determine the localization of EGFR in response to arsenic exposure and it is discussed 

specifically in chapter 2. 

Aim 3: Assess EGFR dependency in chronic arsenic-induced increased cell 

migration. 

We used time-lapse microscopy to obtain live-cell imaging and measure effects of 

chronic arsenic exposure in cell speed, persistence and cell protrusion length. Chronic 

arsenic impact on cell migratory ability is discussed specifically in chapter 3. 

The goal of this work was to provide a mechanism by which chronic arsenic acts 

on the EGFR signaling, which will lead to discovering novel therapeutic targets of 

NSCLC. The work proposed in Aim 1 and 2 gave us a biochemical effect of chronic 

arsenic exposure on the EGFR signaling axis and differentiated the impact of acute and 

chronic arsenic exposure in lung epithelial cells. More specifically, we discovered that 

chronic arsenic exposure increases cell surface level of EGFR supported by increased 

TGFα secretion. This work is discussed in Chapter 2 of this dissertation and has been 

published in Toxicology In Vitro in 2020. The work proposed in Aim 3 helped us to 

elucidate EGFR dependency in chronic arsenic-induced increased cell migration that 

may contribute to identifying a novel therapeutic target for lung cancer. This work is 

discussed in Chapter 3 of this dissertation.  
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CHAPTER 2 

CHRONIC AND ACUTE ARSENIC EXPOSURE ENHANCE EGFR EXPRESSION VIA 

DISTINCT MOLECULAR MECHANISMS 

Introduction 

 Arsenic is ranked number one on the ATSDR Substance Priority List (ATSDR, 

2017), and was classified as a group I “carcinogenic to humans” by the IARC in 1973 

based on epidemiological carcinogenicity evidence in humans and in animal models [2-

4]. Arsenic is ubiquitous in the environment and, depending on the dose and duration of 

exposure, can target many different types of tissues and organs, causing a wide array of 

adverse health effects, including vomiting, diarrhea, and cancer [43]. 

The lungs are one of the major target organs of arsenic [75, 175] as 

demonstrated in studies using female mice exposed to arsenic in utero or whole-life 

exposure [75], and supported by epidemiologic studies of children exposed to arsenic 

contaminated drinking water [73, 386]. Countries that have high levels of arsenic in 

drinking water have some of the highest incidence of lung cancer in the world [123, 128, 

130-132]. In particular, adenocarcinoma and squamous-cell carcinoma are the most 

prevalent among people with chronic arsenic exposure [102, 103]. Despite these 

associations, there are no clearly defined mechanisms by which chronic arsenic 

exposure induces carcinogenesis. 

The epidermal growth factor receptor, EGFR is a cell surface receptor tyrosine 

kinase (RTK) that has important roles in developmental biology, tissue homeostasis and 

wound healing.  Overexpression and hyperactivation of EGFR family members (i.e. 

EGFR, ErbB2, ErbB3, and ErbB4) have been well-characterized as biomarkers of a 
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variety of cancers and are associated with poor patient prognosis [265, 309, 387-393]. 

Specifically, the overexpression and hyperactivation of the EGFR (as compared to 

adjacent non-cancerous tissue) is seen in up to 89% of NSCLC [276, 304, 305, 307, 

309, 310, 394, 395]. Given the association of ErbB family of RTKs with cancer, it is a 

logical candidate to link arsenic exposure and lung cancer. 

Binding of one of seven endogenous ligands to the extracellular domain of the 

receptor leads to conformational changes that culminate in receptor dimerization and 

activation of the intrinsic kinase domain [396-398]. Once activated, the kinase from one 

receptor trans-phosphorylates tyrosine residues on the intracellular carboxy-terminus of 

its receptor pair. These phosphotyrosines are docking sites for downstream signaling 

proteins (effectors) that enhance cell proliferation, survival, tumorigenesis, and 

differentiation. Overexpression of the EGFR is commonly the result of one of four 

mechanisms: 1) increased transcription of the EGFR gene, 2) overproduction of its 

ligands, 3) slowed lysosomal degradation of the receptor, and 4) constitutively active 

mutations in the kinase domain. These events increase receptor tyrosine 

phosphorylation and enhance downstream signaling.  

We hypothesized that chronic arsenic exposure modulates EGFR signaling axis 

by causing hyperactivation and overexpression of EGFR in lung epithelial cells, which 

can potentially contribute to lung carcinogenesis. This is supported by report that acute 

arsenite exposure (5-15 µM for 24 hours) increases EGFR expression in HeLa cells 

[277]. However, this level and duration of exposure and cell line do not accurately reflect 

what is observed in epidemiological studies. Thus, we examined the effects of acute 

versus chronic, and used an environmentally relevant level of arsenite exposure on 

BEAS-2B cells, non-malignant human lung bronchus epithelial cells immortalized by 

SV40 transfection [380]. BEAS-2B cells have proven to be an excellent model for 

studying arsenic-induced lung cell carcinogenesis [203, 381]. BEAS-2B cells were 
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exposed to an arsenite concentration of 100 nM, which is the observed arsenic 

concentration in the plasma of individuals that chronically consumed arsenic-

contaminated drinking water, for 24 weeks. 

 

Materials and methods 
 
Cell culture 

Human bronchial epithelial (Beas-2B) cells from American Type Culture Collection 

(Manassas, VA) were grown in growth media [LHC-9 media (Gibco)] on a matrix of 

fibronectin (10 µg/mL) and collagen (35 µg/mL) (FNC Coating Mix, AthenaES). Both 

acute and chronic conditions were grown on FNC coated plates. Chronic arsenite 

exposed cells were treated with 100 nM sodium arsenite (final concentration) (CAS 

7784-465-Fisher Scientific). Three cultures of each condition (0 or 100 nM sodieum 

arsenite) were maintained separately for 24 weeks. Cells were propagated by 

trypsinization and plating at 1 x 106 cells/ 10 cm dish every 3-4 days. Each week 1 x 106 

cells/vial were frozen and stored in liquid nitrogen. The identity of untreated and sodium 

arsenite treated BEAS-2B cells was ensured by STR mapping after completion of 24 

weeks in all three biological replicates (American Type Culture Collection, Manassas, 

VA). In experiments in which the cells were acutely exposed to 3 and 5 µM of sodium 

arsenite for 24 h, cells were grown in BEGM (Bronchial Epithelial Growth Medium) 

medium bulletkit (Lonza) without GA-1000 and EGF. This allowed for the selective 

removal of EGF while preserving the other media components necessary for cell 

viability. Cell morphology was examined under a light microscope (TE-2000; Nikon, 

Tokyo, Japan) with a 4x objective.  

 

Cell lysate preparation 



www.manaraa.com
40	

When indicated, cells were serum-starved by washing twice with phosphate-buffered 

saline (PBS) in pH 7.3 and incubating in BEGM medium bulletkit (Lonza) without GA-

1000 and EGF. To harvest, cells were washed with PBS, incubated in 5 mM EDTA/PBS 

solution for 15 min at 37 °C to dissociate the cells. Then the cells were counted using 

hemocytometer to ensure equivalent number of cells to be loaded on the gel. The cells 

were equilibrated to 4 °C by incubation on ice and harvested in ice cold RIPA buffer [150 

mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 10mM sodium 

pyrophosphate, 100 mM sodium fluoride, 50 mM Tris-HCl (pH 8.0)] containing protease 

inhibitor, PMSF (EMD Millipore)]. Cells were solubilized by end-over-end rotation at 4 °C. 

Insoluble material was removed by centrifugation at 21, 130 xg for 10 min at 4 °C. 

Immunoblotting 

SDS sample buffer containing 10% βME was added to the cell lysates and heated at 

95°C for 3 min. Equivalent amounts of sample were separated by 7.5% SDS-PAGE and 

electroblotted onto a nitrocellulose membrane. Membranes were immunoblotted with the 

following antibodies according to the manufacturer’s directions: EGFR (1:1000 in 

5%milk/TBST; Santa Cruz, sc-03), pY1068 (1:500 in 5% milk in TBST; Cell Signaling, 

2234), and α-tubulin (1:5000 dilution in 5%milk; Sigma-Aldrich, T6199). Immunoreactive 

proteins were visualized by incubation with the appropriate horseradish peroxidase-

conjugated secondary antibody (anti-mouse or anti-rabbit, Thermo Fisher) and 

enhanced chemiluminescence (ECL). Images were captured using a Fotodyne imaging 

system (Hartland, WI). Immunoreactive bands were quantified using ImageJ software 

[399]. 

Alamar Blue assay 
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BEAS-2B cells were grown in LHC-9 media in 96-well microplates (10,000 cells/well) for 

24 h. Cells were treated with varying concentrations of arsenic for 24 h, and serum-free 

medium was used as a control. Cell viability was determined using Alamar Blue Reagent 

(Bio-Rad) according to the manufacturer’s directions. Cell-associated fluorescence was 

measured in Gen5 BioTek plate reader (excitation: 530 nm; emission: 590nm). 

RT-qPCR 

RNA was isolated from BEAS-2B cells by using RNAqueous-Micro Total RNA Isolation 

Kit (Thermo Fisher, AM1931). cDNA was synthesized using High-Capacity cDNA 

Reverse Transcription Kits (Thermo Fisher, 4368814). qPCR was performed using 

TaqMan Gene Expression Master Mix (Thermo Fisher, 4369016). The following primers 

were obtained from Thermo Fisher and previously validated: EGFR (Catalog# 4331182, 

Assay ID Hs01076089), ErbB2 (Catalog# 4331182, Assay ID Hs01001580_m1), EGF 

(Catalog# 4331182, Assay ID Hs01099990_m1), AREG (Catalog# 4331182, Assay ID 

Hs00950669_m1), BTC (Catalog# 4331182, Assay ID Hs00156140_m1), and TGFα 

(Catalog# 4331182, Assay ID Hs00608187_m1). The 96-well plate (Thermo Fisher, 

4346906) was read using a StepOnePlus System (ThermoFisher, 4376600). GAPDH 

was used as a normalization control. 

Flow Cytometry 

BEAS-2B cells were dissociated with TrypLE Select Enzyme (Invitrogen) and 

resuspended at a density of 1x106 cells/ml in growth medium. After washes with PBS, 

the cells were stained with phycoerythrin-conjugated anti-EGFR (BD, #555997) for 30 

minutes at room temperature, and flow cytometric analysis was performed using a BD 

FACSCalibur. Data analysis was performed with FlowJo (Tree Star).  
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ELISA 

The 96-well TGFα Microplates (abcam 100646) were coated overnight at 4°C with gentle 

shaking with 100 µL of cell culture supernatants (from 2 ml of a 80% confluent 60 mm 

dish) resuspended in 1X Assay Diluent B. The plates were washed by filling each well 

with 1X Wash Solution using a 96-well plate auto-washer. The plates were then 

incubated with 100 µL of 1X Biotinylated TGFα Detection Antibody for 1 hour at room 

temperature with gentle shaking. After the wash, the plates were then incubated with 

100 µL of 1X HRP-Streptavidin solution for 45 minutes at room temperature with gentle 

shaking. After washing, the plates were incubated with 100 µL of tetramethylbenzidine 

(TMB) One-Step Substrate Reagent for 30 minutes at room temperature in the dark with 

gentle shaking. The ELISA Stop Solution was added and the absorbance was read at 

450 nm. Using the standard curve, the concentrations of TGFα were calculated. 

Transwell assay 

The 8-µm polycarbonate membrane, 6.5-mm inserts (Corning, Inc., Corning, NY) were 

moisturized with serum-free media for 30 minutes at 37°C. After incubation, serum-free 

media containing the indicated concentrations of EGF and arsenic were added in the 

lower chamber. Media from BEAS-2B cells grown in 100 nM sodium arsenite for 24 

weeks (conditioned media) was harvested after 24 hours at 37°C in 5% CO2. A density 

of 100,000 BEAS-2B cells were plated in the upper chamber of the insert (The cells were 

harvested as described above). The cells were allowed to migrate for 16 hours at 37°C 

in 5% CO2. Migrated cells were then fixed in methanol, stained in Giemsa (3250-4, Ricca 

Chemical, Arlington, Texas), and counted under a microscope (TE-2000; Nikon, Tokyo, 

Japan) with a 20x objective. 

Data Analysis 
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Data were analyzed using Graphpad Prism 5.0 Software (Graphpad Software). 

Statistical tests are indicated in the figure legends. 

Results 

Chronic arsenite exposure increases EGFR expression and activity without altering cell 

morphology or viability 

It has been previously demonstrated that HeLa cells acutely exposed to 5-15 µM 

arsenite increase EGFR protein expression [277]. To determine whether this was true in 

human lung epithelial cells (BEAS-2B cells), we repeated this experiment and found 

acute arsenite exposure (5 µM for 24 hours) caused a 1.5-fold increase in EGFR levels, 

but did not stimulate EGFR activity measured by pY1068 level (Fig. 6A). Additionally, we 

noted that acute arsenite exposure is accompanied by a decrease in cell viability and 

morphological changes to the cells (Fig 6B and 6C). 

To more accurately model an environmentally relevant arsenic exposure, the 

lung epithelial cell line, BEAS-2B cells were exposed to 100 nM of arsenite, which did 

not affect cell viability (Fig. 6B) or grossly impact cell morphology (Fig. 6C). As a control 

for the culturing process and propagation of the cells, three sets of “passage matched” 

cultures were maintained in parallel to the three arsenite exposed cultures. After 24 

weeks in culture, all six cultures were subjected to Short Tandem Repeat (STR) profiling 

and were indistinguishable from the naïve BEAS-2B cells.  

Over the course of 24 weeks of 100 nM arsenite treatment, we sampled various 

time points (0, 6, 12, 18, and 24 weeks). Arsenite treated cells displayed an increase in 

EGFR expression, as well as in receptor phosphorylation (Fig. 7) as compared to 

passage matched control. Interestingly, in all three biological replicates, we observed the 

peak of basal EGFR phosphorylation at 12 weeks. This increase in basal EGFR activity  
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Figure 6. BEAS-2B cells exposed to acute arsenite have increased EGFR 
expression, altered cell morphology, and decreased viability.  
A. BEAS-2B cells were treated with or without EGF (10 ng/ml) for 10 minutes or exposed 
to 3 or 5 µM arsenite for 24 hours or no arsenic (-) as indicated. Cell lysates were 
prepared and equivalent number of cells (100,000 cells) were resolved by 7.5% SDS-
PAGE and immunoblotted for the presence of total EGFR, phosphorylated EGFR 
(pY1068), or α-tubulin as a loading control. Relative levels of EGFR and phosphorylated 
EGFR are indicated below the immunoblot. Shown is a representative blot from three 
independent experiments. B. BEAS-2B cells were exposed to varying concentrations (0-
100 µM) of sodium arsenite for 24 hours. Cell viability was assayed using Alamar Blue. 
Data are plotted as the average percentage of viable cells (compared to 0 µM sodium 
arsenite) ± SD (n=3). The concentration that is used in this study, 100 nM (10-7 M), does 
not decrease the cell viability. C. Representative micrographs showing the morphology 
of BEAS-2B cells with and without arsenite treatment. Upper row is a 4X magnification 
(size bar = 100 µm), bottom panels show magnified boxed areas in top panel (size bar = 
10 µm). 
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Figure 7. Chronic arsenite exposure induces EGFR expression and basal 
phosphorylation.   
BEAS-2B cells were treated without (-, even lanes 2-8) or with (+, odd lanes 3-9) 100 nM 
sodium arsenite for 6, 12, 18, or 24 weeks. As a positive control for EGFR tyrosine 
phosphorylation, naïve BEAS-2B cells were treated with 10 ng/ml EGF for 7 minutes 
(Lane 1). Cell lysates were prepared and equivalent number of cells (100,000 cells/lane) 
were resolved by 7.5% SDS-PAGE and immunoblotted for total EGFR expression and 
phosphorylation at tyrosine 1068 (pY1068). α-tubulin was used as a loading control. 
Shown is a representative blot from three independent experiments. 
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after chronic, low level arsenite exposure is in stark contrast to the absence of 

detectable receptor phosphorylation in cells treated with 3 or 5 µM arsenite for 24 hours 

(Fig. 6A). 

Chronic arsenite exposure increases cell migratory ability in a ligand-independent 

manner. 

To determine if there was a biological consequence of the increased basal EGFR 

activity from chronic arsenic exposure, we performed transwell migration assay to 

measure the migratory ability of naïve, acute arsenite treated, 24 weeks passage 

matched, and 24 weeks arsenite treated cells with and without EGF treatment (Fig. 8). 

Naïve, acute arsenite treated and passage matched cells exhibited approximately 2-fold 

increase in EGF dependent cell migration (Fig. 8). In contrast, BEAS-2B cells chronically 

treated with arsenite had an elevated rate of cell migration, and a small marginal 

increase with EGF treatment (Fig. 8) shown with the highest p value (p=0.1800). 

Chronic arsenite increases cell surface level of EGFR. 

Next, we investigated the localization of EGFR by measuring the cell surface 

levels. A fluorescently-tagged [phycoerythrin (PE)-conjugated] anti-EGFR antibody that 

recognizes the extracellular domain of the receptor was incubated with BEAS-2B cells to 

measure the cell surface level of EGFR. Fluorescent Activated Cell Sorting (FACS) 

determined the amount of cell-associated fluorescence, which served as an indirect 

measure of cell surface EGFR.  As compared to naïve, acute arsenite treated, and 

passage matched cells, cells chronically exposed to a low level of arsenite for 24 weeks 

had the highest median fluorescent intensity (MFI) values (Fig. 9A), indicating there were 

more cell surface EGFR. Acute arsenite (5 µM) exposed cells had a significant 
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Figure 8. Chronic arsenite exposure increases ligand-independent cell migration.   
Naïve, passage matched and 24 weeks arsenite treated cells were plated onto the upper 
chamber of a 0.8µm transwell and treated without or with 10 ng/mL EGF for 16 hours. 
The cells that migrated through the transwell were fixed with methanol and stained with 
Giemsa. Total 10 fields were imaged per sample to count the number of migrated cells. 
The numbers of migrated cells were then normalized to naïve cells without arsenite 
treatment. Individual symbols represent the fold change in the number of migrated cells 
from each experiment (n=4).  Data were analyzed by two-way ANOVA (Graphpad 
Prism).  
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Figure 9. Acute and chronic arsenite exposure differentially affect cell surface 
levels of EGFR.  
The cell surface level of EGFR was measured by incubating cells with phycoerythrin 
(PE)-conjugated EGFR antibody that binds to the extracellular domain of the receptor. 
Cell surface levels of EGFR were monitored by 5,000 cells/experiment by Fluorescent 
Activated Cell Sorting (FACS). A. Data are plotted from 24-week passage matched 
BEAS-2B cells that were treated without and with acute arsenite (5 µM), and 24-week 
chronic arsenite (100 nM). Individual symbols represent the mean fluorescence intensity 
(MFI) from each experiment (n=3). The bars and error bars represent the average MFI ± 
S.D. Data were analyzed by two-way ANOVA (Graphpad Prism). B. Cells from varying 
times of 100nM arsenite treatment were maintained in growth media (clear bars) or 
serum starved for 24 hours (grey bars) to washout ligands and cause receptors to 
redistribute to the plasma membrane. Individual symbols represent the mean 
fluorescence intensity (MFI) from each experiment (n=3). The bars and error bars 
represent the average MFI ± S.D. Data were analyzed by two-way ANOVA (Graphpad 
Prism).  
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decreased cell surface level of EGFR as compared to the chronically exposed cells 

(p=0.015). To characterize the level of intracellular EGFR, we serum starved the cells to 

redistribute intracellular receptors to the plasma membrane. Cell surface levels of the 

EGFR were examined using the PE-conjugated anti-EGFR antibody and FACS. The 

comparison of basal cell surface expression (in growth media) versus induced cell 

surface expression (serum starved) indicates there is a time-dependent increase in the 

total and percentage of intracellular EGFR (Fig. 9B).  

Chronic arsenite treatment increases TGFα expression. 

We next determined if chronic arsenic exposure increased transcription of the 

proximal components of the EGFR signaling axis. Acute arsenic exposure has been 

reported to increase expression of EGFR and its ligands [172, 277, 363, 400, 401].  

Quantitative PCR (qPCR) was used to assay mRNA levels of EGFR (Fig. 10A) and its 

closely related family member ERBB2 (Fig. 10B), as well as four endogenous EGFR 

ligands [epidermal growth factor (EGF), transforming growth factor-α (TGFα), 

amphiregulin (AREG), and β-cellulin (BTC)] (Fig. 10C-F). In acute arsenite exposure, 

only BTC mRNA level significantly increased  (p<0.0001). Over the course of 24 weeks, 

the EGFR mRNA levels remained indistinguishable from control cells; ERBB2 levels 

were elevated in one of the three biological replicates. The average TGFα mRNA level 

increased starting at 6 weeks of arsenite treatment and steadily climbed over the 24 

week time course and had the highest ligand mRNA level of all four ligands examined. 

The TGFα mRNA levels approached, but did not achieve, statistical significance (p= 

0.055, r2= 0.756) by the criteria set by Bryhn and Dimberg [402]. This is likely due to 

biological variability among the replicates (1.7 – 10.3 - fold over untreated cells). There 

were other changes in ligand mRNA. For instance, EGF mRNA levels increased in the  
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Figure 10. mRNA levels of the EGFR signaling axis in response to arsenic 
treatment.  
RNA was isolated from BEAS-2B cells treated without or with 100 nM sodium arsenite (0, 
6, 12, 18, or 24 weeks) and with 5 µM sodium arsenite (24 hours), and reverse 
transcribed to cDNA. Individual genes were amplified using qPCR and commercially 
available primers (Thermo Fisher). Graphs are separated by receptors [EGFR (A) and 
ERBB2 (B)] and ligands [Epidermal growth factor (EGF), Transforming growth factor-α 
(TGFα), Amphiregulin (AREG), and β-cellulin (BTC), (C-F)]. Data are plotted as the fold-
increase in gene expression (relative to 0 week) normalized to the average GAPDH 
levels. Each biological replicate is represented by the symbols. The bars indicate the 
average ± S.D.  (n= 3). 
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passage matched samples. In addition, AREG and BTC mRNA levels increased at 24 

weeks as compared to the untreated cells. Because the levels of these ligands 

increased only at the 24 week time point, it was not pursued because it did not match 

the kinetics of EGFR activity (Fig. 7). 

To determine if the increases in TGFα mRNA levels observed in chronic arsenite 

exposure were reflected by commensurate changes in TGFα protein levels, we 

performed an ELISA. At all four time points examined and all biological replicates, there 

was an increase in TGFα levels as compared to untreated cells (Fig. 11). These 

differences were most evident after 24 weeks of 100 nM arsenite exposure; TGFα levels 

in the media increased up to an average concentration of 58 pg/mL and achieved 

statistical significance (p= 0.0062). These data are consistent with a previous study that 

observed increased concentration of TGFα in urothelial cells of Mexican populations 

exposed to arsenic [403].  

Discussion 

Many studies have investigated how cellular toxicity and carcinogenesis are 

associated with arsenic exposure [172, 203, 219, 225, 234-238, 240-246, 277]. 

However, our study sets itself apart because it examines 1) the cells that accurately 

model lung epithelial carcinogenesis, 2) environmentally relevant arsenic concentrations, 

and 3) the kinetics of cellular changes. These findings more accurately reflect cancer 

development than do results from acute exposure. Our data expose important 

differences between acute and chronic arsenic exposure. These differences include cell 

morphology, cytotoxicity, EGFR activity and subcellular distribution indicating that the 

two treatment conditions induce EGFR expression using distinct mechanisms. The  



www.manaraa.com
52	

Figure 11. Chronic arsenite significantly increases TGFα  protein levels. 
BEAS-2B cells were treated without or with 100 nM arsenite for 0 – 24 weeks as 
indicated. TGFα levels in the supernatant from passage matched and chronic arsenite 
treated cells were determined by ELISA. Data points represent the average TGFα 
concentration (of two technical replicates). Bars represent the mean concentration ± S.D. 
for each of the biological replicates (n=3). Data were analyzed using a two-way ANOVA 
(Graphpad Prism). 
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findings in this study are relevant to events occurring during arsenic exposure induced 

lung carcinogenesis. We investigated EGFR signaling in a model of chronic low level 

arsenite exposure in non-malignant human bronchial epithelial cells. We found that 24-

weeks of 100 nM arsenite exposure increased both EGFR expression and activity (Fig 

2), which contributed to increased cell migratory ability (Fig 3). In contrast to both naïve 

and passage matched cells, cells chronically treated with arsenite did not have an 

appreciable increase in its migratory ability with addition of EGF because receptor basal 

activity was already increased. At the same time, we observed an increase in the cell 

surface level of EGFR, as well as a progressive increase in TGFα levels (Figs. 4 – 6). 

This significant difference in the cell surface expression level of EGFR between acute 

and chronic arsenite exposure further highlights their possible differential mechanistic 

pathways. We also observed an increase in the amount of intracellular EGFR in cells 

chronically exposed to arsenite (Fig. 4B). This finding suggests that increased levels of 

TGFα not only triggers recycling of the receptor to induce increased cell surface level of 

EGFR, but also changes the dynamics of the EGFR trafficking, which diverts the 

ligand:receptor complex from the lysosome thus preventing degradation and signal 

termination [296-300], leading to increased basal EGFR activity (Fig. 2). It is well-

established that arsenic toxicities are highly dose- and time-dependent. The usual acute 

toxicity symptoms include diarrhea, vomiting, dehydration and hypotension, whereas 

chronic toxicity symptoms include cancer, cardiovascular disease, and respiratory 

disease. These symptoms support my findings of different impacts on BEAS-2B cells 

from acute and chronic arsenite exposure. 

In many ways, the ability of arsenic exposure to increase ligand production is not 

surprising. Acute high level arsenic exposure has been reported to increase mRNA 

expression for other endogenous EGFR ligands (i.e. HB-EGF) [172]. However, the 

previous experimental protocols that use acute high level arsenic exposure do not 
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accurately reflect what is observed in the human population. Future studies are 

warranted to determine whether chronic low level arsenic exposure differentially affects 

EGFR growth factor production and if those effects are cell type specific. 

It is noteworthy that the concentration of secreted TGFα in chronic arsenite 

treated cells is low (ranging from 4.5 pg/mL to 75.28 pg/mL). We noted this 

concentration is lower than the ligand’s affinity for the EGFR (Kd = 4.6 nM or 25,300 

pg/mL) [404]. We need additional studies to understand how these low concentrations of 

TGFα lead to EGFR activity. There are several studies that have observed malignant 

effects of TGFα in an autocrine manner in various types of cancer, including NSCLC 

[405-411]. Alternatively, TGFα may communicate with cells via exosomes as has been 

reported in other arsenic-transformed cells [412]. Isolating exosomes from chronic-

arsenic treated cells and measuring the levels of TGFα could provide additional 

information on the potential signaling mechanism. Also, additional studies are warranted 

to determine key events that lead to observed secretion of TGFα.  

Despite the need to reconcile some mechanistic details, our observation is 

consistent with the previous reports that nearly 50% of NSCLCs are characterized by 

increased TGFα [305]. Furthermore, there are associations between arsenic exposure 

and TGFα mRNA levels in skin tissues of mice chronically exposed to arsenic-

contaminated drinking water [363], as well as TGFα protein levels in bladder urothelial 

cells of individuals chronically exposed to arsenic-contaminated drinking water [403]. 

Further, as a mechanism to increased EGFR expression and activity, TGFα is logical 

from a receptor biology perspective. TGFα and EGF bind EGFR with comparable affinity 

at physiological pH, but TGFα binding is more sensitive to pH changes. For instance, 

50% of TGFα will dissociate from the EGFR at pH of about 6.8, whereas a pH of 5.8 is 

required to dissociate 50% of the EGF [298-300]. Thus, at the cell surface, both ligands 

stimulate receptor and the ligand:receptor complex is internalized. As the complex 
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moves to the early endosome, this more acidic compartment causes ligand dissociation 

and prevents the downstream signaling by directing the receptor to the lysosome.  

This transparent presentation of the data allows us to see that carcinogenesis is 

a stochastic process. Much the way not every smoker develops lung cancer, not every 

lung cell exposed to arsenic has the same increase in TGFα or EGFR expression. The 

kinetic data reveal overall trends, but the timing and magnitude of TGFα expression 

clearly varies from sample to sample. A longer and larger analysis may be useful for 

making clinical predictions.  

Chronic exposure of BEAS-2B cells to environmentally relevant concentrations of 

arsenic results in increased TGFα expression accompanied by elevated EGFR 

phosphorylation and increased cell surface EGFR, which is uniquely different from acute 

arsenic exposure. This study demonstrates different toxicological effects between acute 

and chronic arsenic exposure by highlighting their effects on EGFR activity and 

localization. 
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CHAPTER 3 

CHRONIC ARSENIC EXPOSURE INCREASES EGFR-DEPENDENT CELL MOTILITY 

IN BEAS-2B CELLS 

Introduction 

Arsenic is an environmental contaminant that is ranked number one on the 

Agency for Toxic Substances and Disease Registry (ATSDR) Substance Priority List 

(ATSDR, 2017). Depending on the dose and duration of exposure, arsenic can have 

profoundly different toxicities. For instance, acute high dose arsenic exposure causes 

dehydration, hypotension, gastrointestinal distress (abdominal pain, vomiting, diarrhea), 

and renal failure [22]. In contrast, low dose chronic exposure is linked to diabetes, 

cardiovascular disease, dermal pathologies and respiratory diseases including lung 

cancer [22].  While the underlying pathophysiology associated with acute arsenic 

exposure is clear, the molecular changes accompanying chronic exposure have not 

been fully elucidated.  

The lungs are one of the primary tissues damaged by chronic arsenic exposure. 

In studies using female mice exposed to arsenic in utero and whole-life exposure [75], 

whole life exposure to arsenic caused approximately six-fold increase in the incidence of 

lung cancer.  These experimental data are supported by epidemiologic studies showing 

the highest incidence of lung cancer in countries that have high levels of arsenic in 

drinking water [102, 103, 124-126, 223, 413]. Despite these associations, there are no 

clearly defined mechanisms by which chronic arsenic exposure induces carcinogenesis. 

The goal of this research is to understand how chronic arsenic exposure changes lung 
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cells to make them more carcinogenic. Once identified, these cellular and molecular 

changes can be used for the diagnosis, prognosis, and treatment of lung cancer. 

BEAS-2B cells, non-malignant human lung bronchus epithelial cells immortalized 

by SV40 transfection, have proven to be an excellent model for arsenic-induced lung cell 

carcinogenesis [203, 381]. Studies from multiple labs have demonstrated that arsenic 

exposure (>15 weeks) can alter the cell’s phenotype to having an increase in 

carcinogenic phenotype, including anchorage independent cell growth [173, 175, 177, 

187, 190-193, 203, 204, 206] and increased cell motility [42, 192].  

In vitro studies, using concentrations that more accurately reflect those seen in 

human plasma generate a more relevant model of arsenic toxicity in humans. Reports in 

the literature include arsenic exposures up to 60 µM [178, 179]. For our studies, we used 

an arsenic concentration (100 nM) observed in the plasma of individuals that chronically 

consumed arsenic-contaminated drinking water [51]. Our previous study demonstrated 

that chronic low level of arsenic exposure increases Epidermal Growth Factor Receptor 

(EGFR) expression and basal activity. These changes were accompanied by increases 

in cell migration and TGFα secretion [42]. The EGFR is a receptor tyrosine kinase that is 

frequently overexpressed or hyperactivated in many cancers, including lung cancer [276, 

304, 305, 307, 309, 310, 394, 395]. Overexpression of the EGFR is associated with poor 

patient prognosis. Despite these clear links to lung cancer, how changes to the EGFR 

signaling axis impact lung epithelial cell biology is not fully understood. 

To better understand the cellular basis for the increased cell migration and how 

chronic arsenic exposure impacts the EGFR signaling pathway, we combined transwell 

migration assays, time-lapse live cell imaging microscopy, and biochemical assays to 

assess EGFR-mediated signaling in BEAS-2B cells.  Conditioned media from cells 

chronically treated with arsenite did not increase cell migration, rather, the conditioned 

media attenuated cell motility, suggesting the amount of secreted TGFα alone is not 
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sufficient to enhance cell migration. After 24 weeks of 100 nM arsenite exposure, we 

observed a two-fold increase in the cell speed, a 23% increase in cell persistence, and a 

30% increase cell protrusion length as compared to passage-matched cells. The 

increased cell motility of chronic arsenic treated cells reverted back to the basal rate of 

the passage-matched cells with AG1478, an EGFR inhibitor. However, increased cell 

persistence and the length of cell protrusion were not AG1478-dependent. Together, 

these data demonstrate that chronic low level arsenite exposure increases cell motility, 

persistence and protrusion length. 

Materials and methods 

Cell culture 

Human bronchial epithelial (BEAS-2B) cells were obtained from ATCC and grown in 

LHC-9 media (Gibco) supplemented with or without 100 nM sodium arsenite (Fisher 

Scientific) on a matrix of 10 µg/mL of fibronectin and 35 µg/mL of collagen (FNC Coating 

Mix, AthenaES). The sodium arsenite (arsenite) concentration was based on the 

average blood arsenic level in people who were exposed to high levels of arsenite in 

drinking water [51]. Cultures were grown in 5% CO2 at 37°C atmosphere. Three 

independent cultures of cells (3 with and 3 without 100 nM sodium arsenite) were 

maintained separately for 24 weeks. Cells were propagated by splitting at 1 x 106 cells/ 

10 cm dish every 3-4 days. Weekly, cells were frozen down at 1 x 106 cells/vial and 

stored in liquid nitrogen [42].    

Transwell assay 

The 8-µm polycarbonate membrane, 6.5-mm inserts (Corning, Inc., Corning, NY) were 

moisturized with serum-free media for 30 minutes at 37°C. After incubation, serum-free 

media containing the indicated concentrations of EGF and arsenic were added in the 
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lower chamber. Media from BEAS-2B cells grown in 100 nM arsenic for 24 weeks 

(conditioned media) was harvested after 24 hours at 37°C in 5% CO2. A density of 

100,000 BEAS-2B cells were plated in the upper chamber of the insert (The cells were 

harvested as described above). The cells were allowed to migrate for 16 hours at 37°C 

in 5% CO2. Migrated cells were then fixed in methanol, stained in Giemsa (3250-4, Ricca 

Chemical, Arlington, Texas), and counted under a microscope (TE-2000; Nikon, Tokyo, 

Japan) with a 20x objective. 

 

Time-lapse microscopy 

A Nikon TE2000 microscope equipped with control of temperature and CO2 levels was 

used. BEAS-2B cells were seeded at 2,000 cells/cm2 on an FNC-coated 6-well plate for 

at least 24 h prior to imaging. The images were obtained with a 10X objective every 15 

minutes over a 24 h period for 6 positions per condition in three biological replicates. A 

total of 30 cells per condition were tracked for cell migration and persistence, and 108 

cells per condition for protrusion lengths. The rate of cell migration and protrusion 

lengths were analyzed with ImageJ using Manual Tracking plugin and cell persistence 

was measured using the Chemotaxis and Migration Tool (Ibidi).  

 

Data Analysis  

Data were analyzed using Graphpad Prism 5.0 Software (Graphpad Software). 

Statistical tests are indicated in the figure legends. 

 
 
Results 
 
Chronic arsenic treatment of BEAS-2B cells increases basal and EGFR stimulated cell 

migration. 
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In our previous study, we observed an increase in cell migration and production 

of TGFα from chronic arsenic exposure [42]. To determine whether the amount of 

secreted soluble ligands are sufficient to increase BEAS-2B cell migration, we performed 

a series of transwell migration assays using cells that were grown in 100 nM arsenite for 

24 weeks (24w) or passaged-matched (24PM) control cells (Fig. 12). Consistent with our 

previous study, chronic arsenic treatment resulted in a three-fold increase in cell 

migration as compared to the passage-matched cells (Fig. 12). Both cell lines were 

responsive to the endogenous EGFR ligand TGFα and exhibited a 2-2.5-fold increase in 

cell migration (Fig. 12). 

Next, we measured cell migration in response to conditioned media from BEAS-

2B cells grown in 100 nM arsenite for 24 weeks. Following treatment with conditioned 

media, cell migration was indistinguishable from the passage-matched control cells, but 

significantly decreased from the chronic arsenic treated cells (p=0.0464) (Fig. 12). 

Immuno-depletion with an anti-TGFα antibody did not significantly change cell migration 

from conditioned media treatment (Fig. 12).  Together, these data indicate that chronic 

arsenic treatment enhances basal and EGFR-stimulated cell migration, but the total, 

secreted TGFα from the conditioned media alone is not sufficient to mediate the 

enhanced migration. 

Chronic arsenic exposure increases the distance traveled and cell persistence. 

To better understand how chronic arsenic treatment increases cell migratory 

ability, we used time-lapse microscopy to monitor arsenic treated and passage-matched 

cells (Supplemental videos 1-6). We assessed cell movement by manually tracking cell 

location every 15 minutes in three biological replicates (6 fields/biological replicate), and 

marked each track with its endpoint on the trajectory plot to measure the distance 

traveled (Fig. 13A). Nearly 50% more cells traveled greater distance with chronic arsenic 
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Figure 12. Chronic arsenic treatment of BEAS-2B cells increases basal and EGFR 
stimulated cell migration. Passage matched and 24 weeks arsenic treated cells were 
plated onto the upper chamber of a 0.8 µm transwell. EGF-deficient (SF) media alone, 
SF media with 10 ng/mL TGFα, medium from chronic arsenic (24 weeks) treated cells 
(conditioned medium), and conditioned media incubated with TGFα neutralizing antibody 
were placed onto the bottom chamber and the cells were allow to migrate at 37°C for 
16h. The cells that migrated through the transwell were fixed with the methanol and 
stained with Giemsa. Total 10 fields were imaged per sample to count the number of 
migrated cells. The numbers of migrated cells were then normalized to passage 
matched cells without arsenic treatment. Individual symbols represent the fold change in 
the number of migrated cells from each experiment (n=3). Data were analyzed by one-
way ANOVA (Graphpad Prism). (* p< 0.05, **p<0.01, ***p<0.001, ****p<0.0001). 
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Figure 13. Chronic arsenic treatment of BEAS-2B cells increases the distance traveled 
and cell persistence. A. Each line represents a path of individual cell migrating from the 
site of its origin. The gray circle (radius of 100 µm) around the origin represents the 
threshold that was applied to measure the distance traveled. The cells were captured 
using a 10x phase-contrast objective lens and focused on the cell membrane protrusions. 
Six fields from each biological replicate were captured for every condition. A total of 10 
cells/each of the three biological replicate were analyzed for every condition. Cell 
movements were manually tracked every 15 minutes for 24 hours. B. The cell distance 
was analyzed with Chemotaxis and Migration Tool (Ibidi). C. Data are plotted as the cell 
persistency of 10 cells of each biological replicate (n=3). Data were analyzed by one-
way ANOVA (Graphpad Prism). (* p< 0.05, **p<0.01, ***p<0.001, ****p<0.0001). 
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exposure as compared to the passage-matched cells (Fig. 13A and 13B). The passage-

matched cells treated with TGFα had the same number of cells as the arsenic treated 

cells that traveled greater than 100 µm (Fig. 13A). Unlike the passage-matched cells, 

TGFα treatment did not affect the arsenic treated cells in distance traveled. AG1478, 

however, decreased the number of cells traveling greater than 100 µm in chronic arsenic 

treated cells by approximately 30% (Fig. 13A and 13B). Together, these data suggest 

that chronic arsenic exposure increases the distance traveled and it is EGFR-dependent. 

Another determinant of cell migration is persistence, or the sustained 

directionality of a cell. Enhanced cell persistence contributes to increased cell migration 

[414]. The closer the persistence value is to 1, the more directionality (linearity of 

migration) there is. There was 23% increase in the cell persistence of chronic arsenic 

treated cells as compared to the passage-matched controls (p=0.0773)  (Fig. 13C). 

Interestingly, the passage-matched cells significantly increased their persistence with 

TGFα treatment, but chronic arsenic treated cells stayed at the same level as those 

without TGFα (Fig. 13C). Treatment with AG1478 had no significant effect on cell 

persistence in either group (Fig. 13C).  

EGFR is necessary and sufficient for increasing cell speed in chronic arsenic treated 
cells. 

To determine whether the cell speed is consistent with the increased cell 

migration, we assessed the cell average velocity. Consistent with the transwell migration 

assays, we observed that chronic arsenic treated cells move approximately twice as fast 

as the untreated cells (Fig. 14A and 14B). We also examined whether the EGFR was 

driving the increase in cell speed, by treating cells with TGFα or AG1478, (Fig. 14A and 

14B, supplemental videos 3-6). TGFα increased the average cell speed in the passage-

matched cells approximately two-fold (Fig. 14Aii and 14B). TGFα had a more modest  
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Figure 14. EGFR is necessary and sufficient for increasing cell speed in chronic arsenic 
treated cells. BEAS-2B cells were grown with and without 100 nM arsenic for 24 weeks. 
A. Representative micrographs showing the cell motility of a single, representative 
BEAS-2B cells. At least after 24 hours of seeding of cells, BEAS-2B cells were treated 
with 10 ng/mL TGFα or 60 nM AG1478. The cells were captured using a 10x phase-
contrast objective lens and focused on the cell membrane protrusions. See videos in 
supplementary data.  Six fields from each biological replicate were captured for every 
condition. A total of 10 cells/each of the three biological replicate were analyzed for 
every condition.  Cell movements were manually tracked every 15 minutes for 24 hours. 
B. Images from the micrographs were quantified using NIH Image. Data are plotted as 
the average of velocity of 10 cells from each biological replicate (n=3). Data were 
analyzed by one-way ANOVA (Graphpad Prism). (* p< 0.05, **p<0.01, ***p<0.001, 
****p<0.0001). 
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relative fold-increase in the velocity of the arsenic treated cells (Fig. 14Av and 14B), but 

an overall greater velocity. In the presence of AG1478, the velocity of both passage-

matched and chronic arsenic treated cells reverted to the basal migration rate of 

passage-matched cells (Fig. 14B). 

 

EGFR is sufficient, but not necessary for increasing cell protrusion length in chronic 
arsenic treated cells. 
 

The sparse cell plating density needed for time-lapse imaging revealed striking 

changes in cell morphology. During the time-lapse imaging, we noted an increase in cell 

protrusion length in chronic arsenic treated cells (Fig. 15A), and that was not revealed at 

higher cell density. Cell protrusions are membrane extensions formed by actin 

polymerization and are associated with an increase in cell migration [415, 416].  We 

wanted to know whether chronic arsenic exposure increases cell protrusion length.  

Using the individual frames from our live-cell imaging, we measured cell 

protrusion lengths of each biological replicate in both untreated and arsenic treated cells. 

Cell protrusion length was measured as the distance from the outermost portion of the 

cell membrane to the cell center. All cells were measured when they were at their 

maximal length during the 24-hour video.  

We observed a 30% increase in cell protrusion length in cells chronically treated 

with arsenic, as compared to the passage-matched cells (Fig. 15A and 15B). TGFα 

significantly increased cell protrusion length in both untreated and arsenic treated cells 

(Fig. 15A and 15B). Unlike cell speed, there was no apparent difference in the length of 

cell protrusion when chronic arsenic treated cells were treated with AG1478 (Fig. 15B).  



www.manaraa.com
66	

Figure 15. EGFR is sufficient, but not necessary for increasing cell protrusion length in 
chronic arsenic treated cells. BEAS-2B cells exposed with and without 100 nM arsenic 
for 24 weeks. A. Representative micrographs showing the cell protrusions of BEAS-2B 
cells. The cells were captured using a 10x phase-contrast objective lens. Six fields from 
each biological replicate were captured for every condition. A total of 36 cells were 
analyzed for each of the three biological replicates for each condition. Cell protrusion 
length was measured as the distance from the leading edge of the cell membrane 
protrusion to the cell mid-body. All cells were measured when they were at their maximal 
length during the 24-hour video. The images were captured every 15 minutes for 24 
hours.  B. Data are plotted as the maximum lengths of cell protrusion of 36 cells of each 
biological replicate (n=3) Data were analyzed by one-way ANOVA (Graphpad Prism). (* 
p< 0.05, **p<0.01, ***p<0.001, ****p<0.0001). 
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Discussion 

Arsenic is a well-established environmental contaminant that is strongly 

associated with the development of chronic lung diseases, including lung cancer [102, 

103, 123, 128, 130-132]. Despite this association, there is a significant need to better 

understand the mechanism of arsenic-induced lung carcinogenesis and leverage these 

insights for developing diagnostic and therapeutic tools. In our earlier study, we 

observed an increase in EGFR expression and activity levels, as well as an increase in 

soluble TGFα secretion from chronic arsenic exposure [42]. TGFα is a unique EGFR 

ligand as it promotes receptor recycling and increases the steady-state levels of the 

EGFR. Here, we investigate whether these cellular changes are sufficient to increase 

cell migration.  

Our transwell migration assays show that the amount of secreted TGFα in the 

conditioned medium is not sufficient to increase cell migration (Fig. 12). The conditioned 

media were unable to increase cell migration in either passage-matched or cells 

chronically treated with arsenic. This was not entirely unexpected because the 

concentrations produced (average concentration of 58 pg/mL) [42] are approximately 

400-fold less than the KD for the receptor (4.6 nM or 25,300 pg/mL) [404]. It is likely that 

TGFα signals in an autocrine or paracrine fashion, and collecting the media disrupts the 

higher local concentrations at the point of ligand production and receptor activation. 

However, we cannot rule out the possibility that there are other components that 

contribute to cell motility in chronic arsenic treated cells. 

Time-lapse microscopy allowed us to measure individual cellular changes 

associated with increased cell migratory ability – namely, cell distance traveled, 

persistence, speed, and protrusion length. These parameters were enhanced in chronic 

arsenic treated cells, as compared to the passage-matched cells (Supplementary Videos 

1-6). While the passage-matched cells increased in cell distance traveled, persistence, 
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speed, and protrusion length in response to TGFα, only cell speed and protrusion 

lengths were enhanced with TGFα in the cells chronically treated with arsenic. This may 

be due to the enhanced levels of EGFR activity and the addition of more growth factor 

cannot further increase cell persistence, which is already near the maximal effect.  

Because we observed an increase in cell invasion potential from chronic arsenic 

exposure, it is worth measuring these parameters on cancerous cells to compare their 

functional readouts to the chronic arsenic exposed cells. These findings will help us to 

identify possible therapeutic target to mitigate arsenic toxicity.  

Interestingly, the addition of the EGFR inhibitor, AG1478, decreased the distance 

traveled and cell speed in cells chronically treated with arsenic, but did not have a 

statistical effect on persistence or protrusion lengths. While these parameters are related 

to cell invasion, cell protrusion length, particularly, is strongly associated with 3D 

invasion behaviors [417]. A study has reported that a glioblastoma cell line, U87, has the 

longest average protrusion length into the collagen and the highest invasion ability, as 

compared to the other typical glioblastoma cell lines [417]. This study highlights the 

importance of the cell protrusion length and its contribution to metastatic capacity. 

Because we have only observed a statistical effect of AG1478 on cell speed, but not on 

cell persistence or protrusion lengths in cells chronically treated with arsenic, one 

explanation is that EGFR-dependent mechanisms do participate in invasion, but 

additional mechanisms are present. Alternatively, chronic arsenic exposure could 

stimulate intrinsic reprogramming processes to allow cells to acquire enhanced 

persistence and cell protrusions, which are commonly observed in malignant cells [418-

423]. For instance, cell membrane protrusions are dependent on the Rho family of 

GTPases, such as Rac1 and RhoA [424-427]. Furthermore, studies have shown that 

arsenic increases both expression and activity levels of Rac1 [240, 428], which is known 

to promote actin polymerization and membrane protrusion. Thus, it is worth investigating 
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how the effects of more physiologically relevant concentration of arsenic exposure might 

impact the Rho family of GTPases. This would help elucidate the mechanism by which 

chronic arsenic exposure promotes cell protrusions and persistence. Further, integrin 

receptor signaling is associated with cytoskeletal rearrangement [429, 430], and there is 

a paucity of research studying the association between chronic arsenic exposure and 

integrin receptor signaling. Particularly, fibronectin receptor is known to be involved in 

polarized cell protrusions [431]. Because we observed EGFR-independent mechanisms 

of chronic arsenic exposure-induced cell persistence and protrusions, it is worth 

investigating how a chronic low level of arsenic exposure impacts integrin receptors, 

specifically fibronectin receptor, and exploring possible arsenic-induced crosstalk 

between fibronectin receptor and EGFR to enhance cell migratory ability.  

 

Conclusion 

Despite a clear association between chronic arsenic exposure and lung cancer, 

little is understood about the molecular changes that lead to carcinogenesis. To better 

understand the cellular basis, we assessed EGFR dependency in cell speed, 

persistence and protrusion length in chronic arsenic treated BEAS-2B cells. We 

observed that chronic arsenic exposure increases cell speed in an EGFR-dependent 

manner, but increased cell persistence and protrusion lengths are not dependent on 

EGFR. Together these changes provide a better understanding of how non-malignant 

human lung epithelial cells acquire cancer-like phenotypes from chronic arsenic 

exposure. We anticipate that this study opens up new avenues for identifying potential 

therapeutic targets for arsenic-induced lung diseases.  
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CHAPTER 4 

DISCUSSION AND FUTURE DIRECTIONS 

A. Restatement of Research Goals 

There is a strong association between chronic arsenic exposure and EGFR 

overexpression, however the exact mechanism of chronic arsenic exposure-induced 

EGFR overexpression, as well as of chronic arsenic exposure-induced lung cancer 

development still remain elusive. This work provides novel mechanisms to chronic 

arsenic-induced EGFR overexpression, as well as functional effects of chronic arsenic 

exposure that contributes to lung cancer development. Further, this study differentiates 

the impact of acute and chronic arsenic in human lung epithelial cells.  

B. Summary of Findings 

To determine whether chronic exposure to an environmentally relevant level of 

arsenic alters EGFR expression, we performed immunoblot. Both EGFR expression and 

its activity levels were measured in acute and chronic arsenic exposure conditions. 

Unlike acute arsenic exposure, chronic exposure increased both expression and activity 

levels of EGFR. The enhanced EGFR activity was supported by increased cell migratory 

ability. We also performed flow cytometry to identify the localization of EGFR. We 

observed an increase in the cell surface level of EGFR from chronic arsenic exposure. 

To understand the biochemistry behind this phenomenon, we performed RT-qPCR to 

measure mRNA levels of a subset of EGFR ligands in both acute and chronic arsenic 

conditions. We observed a time-dependent increase in TGFα mRNA levels from chronic 

arsenic exposure, but from acute exposure, there was a significant increase in BTC. 
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These data further highlight different cellular impact of acute and chronic arsenic 

exposures and support different toxicological effects of arsenic in humans (Table 1). To 

determine whether protein levels are consistent with the mRNA level, we performed 

ELISA and observed an increased secretion of TGFα from chronic arsenic exposure.  

In addition to identifying chronic arsenic exposure-induced secretion of TGFα, we 

wanted to investigate if the amount of secreted TGFα from chronic arsenic exposure was 

sufficient to induce cell migration. First, we performed a series of transwell migration 

assays using conditioned media. We observed that the amount of secreted TGFα is not 

sufficient to increase cell migration. Next, we wanted to understand of the cellular level 

of the increased cell migratory ability from chronic arsenic exposure. We used time-lapse 

live cell imaging microscopy to measure the distance traveled, cell persistence, speed, 

and cell protrusion length. Consistent with our previous study, as well as our transwell 

migration assay, we observed an increase in the distance traveled and average cell 

velocity in chronic arsenic treated cells in an EGFR-dependent manner. Therefore, 

EGFR is necessary and sufficient for increasing cell speed in chronic arsenic treated 

cells. Because cell persistence contributes to increased cell migration [414], we 

measured cell persistence in chronic arsenic treated cells. We hypothesized an increase 

in persistence in chronic arsenic treated cells, because faster cells turn less as speed 

stabilizes cell directionality. Expectedly, we observed an increase in cell persistence in 

chronic arsenic treated cells, but it was not EGFR-dependent, as neither TGFα nor 

AG1478 was able to affect the cell persistence in chronic arsenic treated cells. During 

time-lapse imaging, we noted long cell protrusions in chronic arsenic treated cells. Cell 

membrane protrusions are strongly associated with cell migration [415, 416], as well as 

3D cell invasion [417]. Together, these data show that chronic arsenic increases cell 

migration in both EGFR-dependent and –independent mechanisms. A schematic 

diagram that summarizes the project is shown in Figure 16. 
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Figure 16. A schematic diagram that summarizes the impact of chronic arsenic on 

the EGFR signaling axis and on cell migration.  
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C. Significance of Findings 

There is a direct association between arsenic in drinking water and cancer 

development, including non-small cell lung cancer (NSCLC). Proposed mechanisms of 

arsenic carcinogenicity include, oxidative stress [217-223], miRNA expression [225, 228, 

229], aneuploidy [235], and activation of oncogenic pathways [172, 236-252]. However, 

a clear arsenic-induced carcinogenic mechanism still remains elusive. Both a previous 

study and our study show that acute arsenic exposure (1-10 µM) induces 

overexpression of the EGFR [42, 277]. However, how chronic arsenic exposure affects 

the EGFR expression and its signaling axis remains unclear.  

This study is significant because it broadened our understanding of the effect of 

chronic arsenic exposure on the EGFR signaling axis, contributing to overexpression of 

EGFR. We observed that chronic arsenic exposure increases TGFα expression level, 

resulting in an increase in steady state level of EGFR. These findings suggest that TGFα 

level can be served as a biomarker for the arsenic exposure-induced cancer 

development. Because an increase in TGFα level is not specific to lung cancer, further 

studies are needed to identify cancer type-specific biomarker. These findings also 

suggested that acute and chronic arsenic exposure act differently on the EGFR signaling 

axis, supporting different toxicological effects observed in humans between acute and 

chronic exposure. Further, we assessed the functional effects in cells chronically treated 

with arsenic using a time-lapse microscopy. We observed that both EGFR-dependent 

and –independent mechanisms contribute to an increase in cell invasion potential from 

chronic arsenic exposure. Together, the findings reported in this dissertation are 

significant because they help develop strategies to mitigate the effect of arsenic toxicity, 

which align with the National Institute of Environmental Health Sciences mission of 

discovering the impact of environmental toxicants on people to promote healthier lives.  
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D. Strengths and Weaknesses 

i. Strengths

A major strength of this work is in its use of a physiologically relevant level of 

arsenic and exposure time. There are a variety of cell lines, arsenic concentrations and 

exposure times used in many in vitro studies. The variations in arsenic concentrations 

make direct comparisons challenging; however, the majority of these studies reflect the 

differences in the level of arsenic exposure across the globe. The range of 

concentrations is consistent with the notion that there is no “correct” arsenic 

concentration or consensus in the field. However we wanted to generate the most 

biologically meaningful in vitro studies. The arsenic concentration of 100 nM reflects the 

average blood arsenic level in people who were exposed to high levels of arsenic in 

drinking water [51]. Also, deleterious effects of arsenic are highly dependent not only on 

the dose but also on duration of exposure, as acute and chronic toxicities present 

differently. To mimic human chronic exposure to arsenic, we treated BEAS-2B cells for 6 

months, as chronic exposure is defined as an exposure lasting 6 months to a lifetime, 

according to the EPA Terminology Services [20]. Also, BEAS-2B cells require specific 

growth medium and coated plates. Many studies, however, have used incorrect media 

(added FBS), and/or the cells were not cultured in collagen-coated plates. All these 

factors are known to alter cell morphology, increase mesenchymal associated gene 

expression, decrease in epithelial associated gene expression, and increase sensitivity 

to arsenic [432, 433]. Thus, the cells with these altered characteristics can lead to 

erroneous data to assess and predict toxicological response due to changes in 

sensitivity of the cells. We followed the ATCC recommended guidelines and protocols for 

choosing a proper cell culture media and growth conditions for BEAS-2B cells and 

ensured by STR mapping after completion of 24 weeks in all three biological replicates. 
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Another strength of this work is we were able to assess differential impacts of 

acute and chronic arsenic exposure in the EGFR signaling axis, as well as cellular 

changes (cell motility, persistence, protrusion length) in BEAS-2B cells chronically 

treated with arsenic. There are a scarce number of studies that analyze both acute and 

chronic arsenic exposures. Our study supports different toxicological effects observed in 

humans from acute and chronic arsenic exposure and suggests possible differential 

mechanistic pathways of acute and chronic arsenic exposures.  

Also, we observed an increased secretion of EGFR endogenous ligand TGFα 

from chronic arsenic exposure, which supports a study that observed overexpression of 

both EGFR and TGFα level in NSCLC patients [305]. We anticipate that this study will 

contribute to identifying potential therapeutic targets for arsenic-induced lung diseases. 

ii. Weaknesses 

 One of the few limitations of this work is in its use of one cell line and not using 

any animal models. At present, a number of journals require using multiple cell lines to 

support the scientific findings. Using multiple cell lines will further strengthen the value of 

toxicological studies in vitro and bolster animal and clinical studies. Animal models are 

widely used in toxicological studies as the target sites of arsenic carcinogenetic effects in 

animals are concordant with most of the human targets of arsenic and reflect human 

toxicological responses. Further, due to the nature of toxicokinetics, the cell culture 

responds differently from the human organism even with the same concentration of 

arsenic. However, it is important to note that in vitro models provide fundamental 

platform for animal studies and tools for elucidating the molecular mechanisms 

underlying arsenic toxicity and carcinogenesis.  

 Lack of carcinogenicity assessment is another weakness of this work.  Multiple 

labs perform anchorage-independent assay to assess carcinogenicity of arsenic treated 

cells. The soft agar assay is commonly used to monitor anchorage-independent growth 
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of cells. We have performed soft agar assay and we used B30TIC cells, a tumor cell line 

for epithelial cells, as our positive control. We observed colony formation in B30TIC 

cells, however, we were not able to observe any colony formation even after 29 weeks of 

arsenic treatment in BEAS-2B cells. Nonetheless, there are several studies that observe 

transformation of BEAS-2B cells from arsenic exposure. Though many studies do not 

use a proper cell culture media and follow the ATCC recommended growth conditions 

for BEAS-2B, there are a few studies that used appropriate media, as well as coating 

condition for BEAS-2B cells and have successfully transformed BEAS-2B cells with 

chronic arsenic exposure, thus it is crucial that this work be repeated. Alternatively, 

xenograft models could have been used to assess carcinogenicity of chronic arsenic 

treated cells to strengthen our findings. 

An inherent limitation of in vitro experiments, when studying arsenic toxicological 

effects, is that not all cells receive the same level of arsenic-induced damages. As the 

cells divide, more damaged cells proliferate faster and tend to overcome the host’s 

regulatory mechanism, which results in selection. Therefore, the chronic arsenic treated 

cells in our study may not represent the whole population of cells that were initially 

exposed to arsenic, but a subpopulation of cells that had the most damage from arsenic 

exposure and survived the host’s regulatory mechanism.  

E. Future Directions 

In our study, we observed overexpression of EGFR from chronic arsenic 

exposure and the overexpression of EGFR is widely used as a biomarker for a variety of 

diseases, including lung cancer. However, there is a paucity of research identifying 

biomarkers for early and accurate diagnosis. For future study, I am specifically interested 

in assessing molecular epidemiologic mechanistic pathway markers for environmental 

toxicants-induced adverse effects on fetal growth and child neurodevelopment.  
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Methylation steps have been characterized as a critical arsenic metabolism 

process. Because methylation process is important in elimination of arsenic from the 

systemic circulation, it is easy to incorrectly assume that methylation is a detoxification 

process of arsenic as it enhances excretion of arsenic. However, all arsenic metabolites 

are toxic to different degrees [59, 60, 68, 69]. High ratios of MMA/DMA are indicators of 

a reduction in arsenic methylation [434]. A study has shown a strong inverse relationship 

between urinary MMA levels and gestational age, birth weight, and newborn length 

[434]. However, whether these observed differences in gestational age, birth weight, and 

newborn length affect the later life health had remained elusive, until a recent case-

control study uncovered arsenic methylation capacity is associated with developmental 

delays [435]. Further, reduction in arsenic methylation capacity is associated with 

arsenic-induced ROS generation and oxidative DNA damage. In a recent study, there 

were increased levels of 8-nitroguanine not only in women who were exposed to arsenic 

during pregnancy, but also in newborns and in children through their early life [436]. 

Delineating a direct role of arsenic-induced ROS generation in child development and 

assessing associations between newborns’ arsenic methylation capacity and oxidative 

DNA damage would help identify potential biomarkers that would allow early prediction 

of developmental delays and children’s health. Interestingly, a cohort study in Mexico 

observed pregnant women with higher DMA levels (88%) as compared to general 

populations exposed to arsenic around the world (60-80%) [434, 437, 438]. Because a 

high ratio of DMA/MMA is usually indicative of increased arsenic methylation capacity, 

these observed high levels of DMA might have a protective effect for both mother and 

fetus. Therefore, it is worth investigating the inherent differences in population 

characteristics, such as genetic polymorphisms and nutritional factors.  

Because arsenic targets many different signaling pathways, there are many 

proteins that are strongly associated with arsenic exposure that can be bio-monitored for 
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early diagnosis. Aquaglyceroporins (AQP) are transmembrane channel proteins involved 

in transferring small solutes, such as arsenite. A study has shown an increase in AQP9 

expression from arsenic exposure and its association with lower birth weight [439]. 

Because AQP9 serves as an arsenic transporter, it is presumed that increased AQP9 

increases arsenic uptake, resulting in deleterious effects in fetal growth. However the 

direct relationship still remains unclear, and there are other small solutes that AQP9 

transfers, such as glycerol. Thus, it would be important to identify biomarkers that are 

exclusively induced in response to arsenic exposure.  

The original goal of this research was focused on elucidating the effects of 

chronic arsenic exposure in EGFR signaling axis. In the process of pursuing this 

question, we have uncovered possible mechanisms by which chronic arsenite exposure 

acts to increase EGFR expression, as well as its activity, and to increase cell migratory 

ability. There are several proposed mechanisms for chronic arsenic-induced lung cancer 

development. But the clear mechanism still remains elusive. In this study, we 

demonstrate possible different mechanistic pathways between acute and chronic arsenic 

exposure and assessments of the cellular changes in lung cells chronically exposed to 

arsenic. For future work, we will leverage these insights to identify therapeutic targets 

and biomarkers to enhance current therapy.  
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